Citation: Fuji Sakai, Zhong-Wei Ji, Jiang-Hua Liu, Guo-Song Chen, Ming Jiang. A novel supramolecular graft copolymer via cucurbit[8]uril-based complexation and its self-assembly[J]. Chinese Chemical Letters, ;2013, 24(07): 568-572. shu

A novel supramolecular graft copolymer via cucurbit[8]uril-based complexation and its self-assembly

  • Corresponding author: Guo-Song Chen, 
  • Received Date: 28 February 2013
    Available Online: 26 March 2013

  • A novel supramolecular graft copolymer (SGP) composed of viologen-containing copolymer (P(DMA-co-diEV)) as the main chain and Np ended PNIPAM (Np-PNIPAm) as the grafts is prepared (DMA: N,N-dimethylacryamide, diEV: ethylviologen dimer, Np: naphthalene, PNIPAM: poly(N-isopropylacrylamide)). The grafting is based on the triple complexation among a host of cucurbit[8]uril (CB[8]) and two guests of diEV and Np, which is characterized by UV-vis spectra and ITC. Temperature sensitive property of PNIPAm moiety allows SGP to self-assemble into non-covalently connected micelle (NCCM) at high temperature. The micelles are sensitive to reducing agents, for example Na2S2O3, which breaks the current inclusion complex pair and induces aggregation.
  • 加载中
    1. [1]

      [1] L.Y.T. Chou, K. Ming, W.C.W. Chan, Strategies for the intracellular delivery of nanoparticles, Chem. Soc. Rev. 40 (2011) 233-245.

    2. [2]

      [2] M.C. Jones, H. Gao, J.C. Leroux, Reverse polymeric micelles for pharmaceutical applications, J. Controlled Release 132 (2008) 208-215.

    3. [3]

      [3] V.K. Mourya, N. Inamdar, R.B. Nawale, S.S. Kulthe, Polymeric micelles: general considerations and their applications, Indian J. Pharm. Edu. Res. 45 (2011) 128-138.

    4. [4]

      [4] D. Chen, M. Jiang, Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions, Acc. Chem. Res. 38 (2005) 494-502.

    5. [5]

      [5] M. Guo, M. Jiang, Non-covalently connected micelles (NCCMs): the origins and development of a new concept, Soft Matter 5 (2009) 495-500.

    6. [6]

      [6] G. Chen, M. Jiang, Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly, Chem. Soc. Rev. 40 (2011) 2254-2266.

    7. [7]

      [7] L. Su, Y. Zhao, G. Chen, M. Jiang, Polymeric vesicles mimicking glycocalyx (PV-Gx) for studying carbohydrate-protein interactions in solution, Polym. Chem. 3 (2012) 1560-1566.

    8. [8]

      [8] A.O. Moughton, R.K. O'Reilly, Noncovalently connected micelles, nanoparticles, and metal-functionalized nanocages using supramolecular self-assembly, J. Am. Chem. Soc. 130 (2008) 8714-8725.

    9. [9]

      [9] Q. Yan, J. Yuan, Z. Cai, et al., Voltage-responsive vesicles based on orthogonal assembly of two homopolymers, J. Am. Chem. Soc. 132 (2010) 9268-9270.

    10. [10]

      [10] J. Zou, F. Tao, M. Jiang, Optical switching of self-assembly and disassembly of noncovalently connected amphiphiles, Langmuir 23 (2007) 12791-12794.

    11. [11]

      [11] Z.J. Ding, H.Y. Zhang, L.H. Wang, F. Ding, Y. Liu, A heterowheel [3]pseudorotaxane by intergrating b-cyclodextrin and cucurbit[8]uril inclusion complexes, Org. Lett. 13 (2011) 856-859.

    12. [12]

      [12] (a) A.I. Day, R.J. Blanch, A.P. Arnold, et al., A cucurbituril-based gyroscane: a new supramolecular form, Angew. Chem. Int. Ed. 41 (2002) 275-277;

    13. [13]

      (b) C. Marquez, F. Huang, W.M. Nau, Cucurbiturils: molecular nanocapsules for time-resolved fluorescence-based assays, IEEE Trans. Nanobiosci. 3 (2004) 39-45.

    14. [14]

      [13] J. Kim, I.S. Jung, S.Y. Kim, et al., New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n=5, 7, and 8), J. Am. Chem. Soc. 122 (2000) 540-541.

    15. [15]

      [14] (a) X. Fu, Y. Huang, Z. Tao, et al., Investigation of cucurbit[6,7,8]urils with adefovir bis(L-amino acid) ester prodrug and its anti-HBV activity, Chin. J. Org. Chem. 30 (2010) 675-683;

    16. [16]

      (b) P. Li, L. Li, et al., Application of organic macrocyclic supramolecular structures on adsorption and conversion of carbon dioxide, Prog. Chem. 22 (2010) 1940-1951.

    17. [17]

      [15] Y.H. Ko, E. Kim, I. Hwang, Supramolecular assemblies built with host-stabilized charge-transfer interactions, Chem. Commun. (2007) 1305-1315.

    18. [18]

      [16] U. Rauwald, O.A. Scherman, Supramolecular block copolymers with cucurbit[8]uril in water, Angew. Chem. Int. Ed. 47 (2008) 3950-3953.

    19. [19]

      [17] X.J. Loh, J. del Barrio, P.P.C. Toh, et al., Triply triggered doxorubicin release from supramolecular nanocontainers, Biomacromolecules 13 (2012) 84-91.

    20. [20]

      [18] Y. Liu, R. Fang, X. Tan, et al., Supramolecular polymerization at low monomer concentrations: enhancing intermolecular interactions and suppressing cyclization by rational molecular design, Chem. Eur. J. 18 (2012) 15650-15654.

    21. [21]

      [19] Y. Liu, K. Liu, Z. Wang, et al., Host-enhanced π-π interaction for water-soluble supramolecular polymerization, Chem. Eur. J. 17 (2011) 9930-9935.

    22. [22]

      [20] Y. Liu, Y. Yu, J. Gao, et al., Water-soluble supramolecular polymerization driven by multiple host-stabilized charge-transfer interactions, Angew. Chem. 122 (2010) 6726-6729.

    23. [23]

      [21] C.J. Chen, D.D. Li, H.B. Wang, et al., Fabrication of dual-responsive micelles based on the supramolecular interaction of cucurbit[8]uril, Polym. Chem. 4 (2013) 242-245.

    24. [24]

      [22] E.A. Appel, F. Biedermann, U. Rauwald, et al., Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril, J. Am. Chem. Soc. 132 (2010) 14251-14260.

    25. [25]

      [23] C. Wu, X. Wang, Globule-to-coil transition of a single homopolymer chain in solution, Phys. Rev. Lett. 80 (1998) 4092-4094.

    26. [26]

      [24] T. Noda, Y. Morishima, Hydrophobic association of random copolymers of sodium 2-(acrylamido)-2-methylpropanesulfonate and dodecyl methacrylate in water as studied by fluorescence and dynamic light scattering, Macromolecules 32 (1999) 4631-4640.

    27. [27]

      [25] S.I. Yusa, M. Kamachi, Y. Morishima, Hydrophobic self-association of cholesterol moieties covalently linked to polyelectrolytes: effect of spacer bond, Langmuir 14 (1998) 6059-6067.

    28. [28]

      [26] J.W. Lee, I. Hwang, W.S. Jeon, et al., Synthetic molecular machine based on reversible end-to-interior and end-to-end loop formation triggered by electrochemical stimuli, Chem. Asian J. 3 (2008) 1277-1283.

    29. [29]

      [27] W.S. Jeon, H.J. Kim, C. Lee, et al., Control of the stoichiometry in host-guest complexation by redox chemistry of guests: inclusion of methylviologen in cucurbit[8]uril, Chem. Commun. (2002) 1828-1829.

  • 加载中
    1. [1]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    2. [2]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    3. [3]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    4. [4]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    5. [5]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    6. [6]

      Hao ZhangHaonan QuEhsan Bahojb NoruziHaibing LiFeng Liang . A nanocomposite film with layer-by-layer self-assembled gold nanospheres driven by cucurbit[7]uril for the selective transport of L-tryptophan and lysozyme. Chinese Chemical Letters, 2025, 36(1): 109731-. doi: 10.1016/j.cclet.2024.109731

    7. [7]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    8. [8]

      Yu XiaYangming JiangXin-Long NiQiaochun WangDaoping Wang . A macrocycle-based "Russian doll": The smallest cucurbit[4]uril in cucurbit[10]uril. Chinese Chemical Letters, 2024, 35(12): 109782-. doi: 10.1016/j.cclet.2024.109782

    9. [9]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    10. [10]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    11. [11]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    12. [12]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    13. [13]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    14. [14]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    15. [15]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    16. [16]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    17. [17]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    18. [18]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    19. [19]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    20. [20]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

Metrics
  • PDF Downloads(0)
  • Abstract views(621)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return