Citation: Hui Li, Ying-Wei Yang. Gold nanoparticles functionalized with supramolecular macrocycles[J]. Chinese Chemical Letters, ;2013, 24(07): 545-552.
-
Gold nanoparticles (AuNPs) functionalized with supramolecular macrocycles are versatile and diverse hybrid nanomaterials, which combine and enhance the characteristics of the two components. In this mini-review, we summarize the recent research progress on the synthesis and assembly of AuNPs functionalized with different supramolecular macrocyclic compounds, i.e., crown ethers, cyclophanes, cyclodextrins (CDs), cucurbit[n]urils (CB[n]), calix[n]arenes, and pillar[n]arenes (P[n]A). Meanwhile, applications of these supramolecular hybrid nanomaterials in the fields of sensors, biomedicine and plasmonic devices are also presented.
-
Keywords:
- Supramolecular macrocycles,
- Au nanoparticles,
- Synthesis,
- Assembly,
- Nanomaterials
-
-
[1]
[1] Z.Y. Zhou, N. Tian, J.T. Li, I. Broadwell, S.G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage, Chem. Soc. Rev. 40 (2011) 4167-4185.
-
[2]
[2] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293-346.
-
[3]
[3] K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing, Chem. Rev. 112 (2012) 2739-2779.
-
[4]
[4] Y.B. Zheng, Y.W. Yang, L. Jensen, et al., Active molecular plasmonics: controlling plasmon resonances with molecular switches, Nano Lett. 9 (2009) 819-825.
-
[5]
[5] Y.B. Zheng, B. Kiraly, S. Cheunkar, T.J. Huang, P.S. Weiss, Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling, Nano Lett. 11 (2011) 2061-2065.
-
[6]
[6] E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine, Chem. Soc. Rev. 41 (2012) 2740-2779.
-
[7]
[7] M. Chen, D.W. Goodman, Catalytically active gold on ordered titania supports, Chem. Soc. Rev. 37 (2008) 1860-1870.
-
[8]
[8] D.S. dos Santos, R.A. Alvarez-Puebla, O.N. Oliveira, R.F. Aroca, Controlling the size and shape of gold nanoparticles in fulvic acid colloidal solutions and their optical characterization using SERS, J. Mater. Chem. 15 (2005) 3045-3049.
-
[9]
[9] Y. Ofir, B. Samanta, V.M. Rotello, Polymer and biopolymer mediated self-assembly of gold nanoparticles, Chem. Soc. Rev. 37 (2008) 1814-1823.
-
[10]
[10] R. Klajn, J.F. Stoddart, B.A. Grzybowski, Nanoparticles functionalised with reversible molecular and supramolecular switches, Chem. Soc. Rev. 39 (2010) 2203-2237.
-
[11]
[11] R. Shenhar, T.B. Norsten, V.M. Rotello, Polymer-mediated nanoparticle assembly: structural control and applications, Adv. Mater. 17 (2005) 657-669.
-
[12]
[12] S.Y. Lin, C.H. Chen, M.C. Lin, H.F. Hsu, A cooperative effect of bifunctionalized nanoparticles on recognition: sensing alkali ions by crown and carboxylate moieties in aqueous media, Anal. Chem. 77 (2005) 4821-4828.
-
[13]
[13] M.L. Ho, J.M. Hsieh, C.W. Lai, et al., 15-crown-5 functionalized Au nanoparticles synthesized via single molecule exchange on silica nanoparticles: its application to probe 15-crown-5/K+/15-crown-5 "sandwiches" as linking mechanisms, J. Phys. Chem. C 113 (2009) 1686-1693.
-
[14]
[14] R. de la Rica, R.M. Fratila, A. Szarpak, J. Huskens, A.H. Velders, Multivalent nanoparticle networks as ultrasensitive enzyme sensors, Angew. Chem. Int. Ed. 50 (2011) 5703-5706.
-
[15]
[15] R. de la Rica, A.H. Velders, Supramolecular Au nanoparticle assemblies as optical probes for enzyme-linked immunoassays, Small 7 (2011) 66-69.
-
[16]
[16] H. Li, D.X. Chen, Y.L. Sun, et al., Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles, J. Am. Chem. Soc. 135 (2013) 1570-1576.
-
[17]
[17] M. Adeli, R.S. Sarabi, R.Y. Farsi, M. Mahmoudi, M. Kalantari, Polyrotaxane/gold nanoparticle hybrid nanomaterials as anticancer drug delivery systems, J. Mater. Chem. 21 (2011) 18686-18695.
-
[18]
[18] D.N. Heo, D.H. Yang, H.J. Moon, et al., Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy, Biomaterials 33 (2012) 856-866.
-
[19]
[19] C. Kim, S.S. Agasti, Z. Zhu, L. Isaacs, V.M. Rotello, Recognition-mediated activation of therapeutic gold nanoparticles inside living cells, Nat. Chem. 2 (2010) 962-966.
-
[20]
[20] Y. Liu, Y.W. Yang, Y. Chen, Thio[2-(benzoylamino)ethylamino]-β-CD fragment modified gold nanoparticles as recycling extractors for [60]fullerene, Chem. Commun. (2005) 4208-4210.
-
[21]
[21] B. Kim, S.L. Tripp, A. Wei, Self-organization of large gold nanoparticle arrays, J. Am. Chem. Soc. 123 (2001) 7955-7956.
-
[22]
[22] D.S. Guo, Y. Liu, Calixarene-based supramolecular polymerization in solution, Chem. Soc. Rev. 41 (2012) 5907-5921.
-
[23]
[23] G.W. Gokel, W.M. Leevy, M.E. Weber, Crown ethers: sensors for ions and molecular scaffolds for materials and biological models, Chem. Rev. 104 (2004) 2723-2750.
-
[24]
[24] R. Villalonga, R. Cao, A. Fragoso, Supramolecular chemistry of cyclodextrins in enzyme technology, Chem. Rev. 107 (2007) 3088-3116.
-
[25]
[25] J.W. Lee, S. Samal, N. Selvapalam, H.J. Kim, K. Kim, Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry, Acc. Chem. Rev. 36 (2003) 621-630.
-
[26]
[26] Y.L. Sun, B.J. Yang, S.X.A. Zhang, Y.W. Yang, Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve, Chem. Eur. J. 18 (2012) 9212-9216.
-
[27]
[27] Y.L. Sun, Y.W. Yang, W. Wu, S.X.A. Zhang, Supramolecular nanovalve systems based on macrocyclic synthetic receptors, Chem. J. Chin. Univ. 33 (2012) 1635-1642.
-
[28]
[28] Y.W. Yang, Towards biocompatible nanovalves based on mesoporous silica nanoparticles, Med. Chem. Commun. 2 (2011) 1033-1049.
-
[29]
[29] W.R. Dichtel, O.S. Miljanic, W. Zhang, et al., Kinetic and thermodynamic approaches for the efficient formation of mechanical bonds, Acc. Chem. Rev. 41 (2008) 1750-1761.
-
[30]
[30] B.K. Juluri, A.S. Kumar, Y. Liu, et al., A mechanical actuator driven electrochemically by artificial molecular muscles, ACS Nano 3 (2009) 291-300.
-
[31]
[31] Y.W. Yang, C.J. Li, H.Y. Zhang, Y. Liu, Molecular design of crown ethers. 22. synthesis of benzocrown ether derivatives and their solvent extraction with univalent/bivalent metal picrates, Chin. J. Chem. 22 (2004) 616-618.
-
[32]
[32] Y.W. Yang, H.Y. Zhang, Y. Liu, Syntheses of dibenzo-18-crown-6 lariat isomers and their complexation with lanthanoid nitrates, Supramol. Chem. 20 (2008) 731-736.
-
[33]
[33] S.Y. Lin, S.W. Liu, C.M. Lin, C.H. Chen, Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles, Anal. Chem. 74 (2002) 330-335.
-
[34]
[34] R. Klajn, L. Fang, A. Coskun, et al., Metal nanoparticles functionalized with molecular and supramolecular switches, J. Am. Chem. Soc. 131 (2009) 4233-4235.
-
[35]
[35] M.A. Olson, A. Coskun, R. Klajn, et al., Assembly of polygonal nanoparticle clusters directed by reversible noncovalent bonding interactions, Nano Lett. 9 (2009) 3185-3190.
-
[36]
[36] R. Klajn, M.A. Olson, P.J. Wesson, et al., Dynamic hook-and-eye nanoparticle sponges, Nat. Chem. 1 (2009) 733-738.
-
[37]
[37] J. Liu, S. Mendoza, E. Roman, et al., Cyclodextrin-modified gold nanospheres. Host-guest interactions at work to control colloidal properties, J. Am. Chem. Soc. 121 (1999) 4304-4305.
-
[38]
[38] J. Liu, J. Alvarez, W. Ong, A.E. Kaifer, Network aggregates formed by C60 and gold nanoparticles capped with γ-cyclodextrin hosts, Nano Lett. 1 (2001) 57-60.
-
[39]
[39] J. Liu, J. Alvarez, W. Ong, E. Roman, A.E. Kaifer, Phase transfer of hydrophilic, cyclodextrin-modified gold nanoparticles to chloroform solutions, J. Am. Chem. Soc. 123 (2001) 11148-11154.
-
[40]
[40] Y.L. Liu, K.B. Male, P. Bouvrette, J.H.T. Luong, Control of the size and distribution of gold nanoparticles by unmodified cyclodextrins, Chem. Mater. 15 (2003) 4172-4180.
-
[41]
[41] J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins, J. Am. Chem. Soc. 126 (2004) 7176-7177.
-
[42]
[42] Y. Chen, Y. Liu, Supramolecular assembly of cyclodextrins and its interactions with nucleic acid, Chin. J. Org. Chem. 32 (2012) 805-814.
-
[43]
[43] Y. Liu, S.H. Song, Y.W. Yang, Y. Chen, Cyclodextrin-modified gold nanoparticle aggregate formed by simple host-guest interactions with 1,10-phenanthroline, J. Chem. Res., Synop. (2004) 152-153.
-
[44]
[44] Y. Liu, H. Wang, Y. Chen, C.F. Ke, M. Liu, Supramolecular aggregates constructed from gold nanoparticles and L-Try-CD polypseudorotaxanes as captors for fullerenes, J. Am. Chem. Soc. 127 (2005) 657-666.
-
[45]
[45] Y. Liu, Y.L. Zhao, Y. Chen, M. Wang, Supramolecular assembly of gold nanoparticles mediated by polypseudorotaxane with thiolated β-cyclodextrin, Macromol. Rapid Commun. 26 (2005) 401-406.
-
[46]
[46] H. Wang, Y. Chen, X.Y. Li, Y. Liu, Synthesis of oligo(ethylenediamino)-β-cyclodextrin modified gold nanoparticle as a DNA concentrator, Mol. Pharmacol. 4 (2007) 189-198.
-
[47]
[47] Y.L. Zhao, Y. Chen, M. Wang, Y. Liu, Mult[2]rotaxanes with gold nanoparticles as centers, Org. Lett. 8 (2006) 1267-1270.
-
[48]
[48] Q. An, G. Li, C. Tao, et al., A general and efficient method to form self-assembled cucurbit[n]uril monolayers on gold surfaces, Chem. Commun. (2008) 1989-1991.
-
[49]
[49] T.C. Lee, O.A. Scherman, Formation of dynamic aggregates in water by cucurbit[ 5]uril capped with gold nanoparticles, Chem. Commun. 46 (2010) 2438-2440.
-
[50]
[50] T.C. Lee, O.A. Scherman, A facile synthesis of dynamic supramolecular aggregates of cucurbit[n]uril (n = 5-8) capped with gold nanoparticles in aqueous media, Chem. Eur. J. 18 (2012) 1628-1633.
-
[51]
[51] R.W. Taylor, T.C. Lee, O.A. Scherman, et al., Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "Glue", ACS Nano 5 (2011) 3878-3887.
-
[52]
[52] C.A. Tao, Q. An, W. Zhu, et al., Cucurbit[n]urils as a SERS hot-spot nanocontainer through bridging gold nanoparticles, Chem. Commun. 47 (2011) 9867-9869.
-
[53]
[53] J.S. Kim, D.T. Quang, Calixarene-derived fluorescent probes, Chem. Rev. 107 (2007) 3780-3799.
-
[54]
[54] A. Wei, Calixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials, Chem. Commun. 42 (2006) 1581-1591.
-
[55]
[55] K.B. Stavens, S.V. Pusztay, S.H. Zou, R.P. Andres, A. Wei, Encapsulation of neutral gold nanoclusters by resorcinarenes, Langmuir 15 (1999) 8337-8339.
-
[56]
[56] R. Balasubramanian, B. Kim, S.L. Tripp, et al., Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles, Langmuir 18 (2002) 3676-3681.
-
[57]
[57] P.J. Cragg, K. Sharma, Pillar[5]arenes: fascinating cyclophanes with a bright future, Chem. Soc. Rev. 41 (2012) 597-607.
-
[58]
[58] X.Y. Hu, X. Wu, Q. Duan, et al., Novel pillar[5]arene-based dynamic polyrotaxanes interlocked by the quadruple hydrogen bonding ureidopyrimidinone motif, Org. Lett. 14 (2012) 4826-4829.
-
[59]
[59] T. Ogoshi, K. Masaki, R. Shiga, K. Kitajima, T.A. Yamagishi, Planar-chiral macrocyclic host pillar[5]arene: no rotation of units and isolation of enantiomers by introducing bulky substituents, Org. Lett. 13 (2011) 1264-1266.
-
[60]
[60] N.L. Strutt, D. Fairen-Jimenez, J. Iehl, et al., Incorporation of an A1/A2-difunctionalized pillar[5]arene into a metal-organic framework, J. Am. Chem. Soc. 134 (2012) 17436-17439.
-
[61]
[61] L. Chen, W. Si, L. Zhang, et al., Chiral selective transmembrane transport of amino acids through artificial channels, J. Am. Chem. Soc. 135 (2013) 2152-2155.
-
[62]
[62] C. Li, J. Ma, L. Zhao, et al., Molecular selective binding of basic amino acids by a water-soluble pillar[5]arene, Chem. Commun. 49 (2013) 1924-1926.
-
[63]
[63] K. Wang, Y.W. Yang, S.X.A. Zhang, Research progress on the synthesis of pillar[n]arenes and their host-guest chemistry, Chem. J. Chin. Univ. 33 (2012) 1-13.
-
[64]
[64] K. Wang, L.L. Tan, D.X. Chen, et al., One-pot synthesis of pillar[n]arenes catalyzed by a minimum amount of TfOH and a solution-phase mechanistic study, Org. Biomol. Chem. 10 (2012) 9405-9409.
-
[65]
[65] Y. Yao, M. Xue, X. Chi, et al., A new water-soluble pillar[5]arene: synthesis and application in the preparation of gold nanoparticles, Chem. Commun. 48 (2012) 6505-6507.
-
[66]
[66] E. Blanco, C. Quintana, L. Hernandez, P. Hernandez, Atomic force microscopy study of new sensing platforms: cucurbit[n]uril (n = 6, 7) on gold, Electroanalysis 25 (2013) 263-268.
-
[67]
[67] L. Veverkova, P. Zvatora, K. Zaruba, V. Kral, Receptor modified gold and silver nanoparticles: effect on interactions with oxoanions, Analyst 138 (2013) 333-338.
-
[1]
-
-
[1]
Zhu Shu , Xin Lei , Yeye Ai , Ke Shao , Jianliang Shen , Zhegang Huang , Yongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585
-
[2]
Guorong Li , Yijing Wu , Chao Zhong , Yixin Yang , Zian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904
-
[3]
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
-
[4]
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
-
[5]
Miao-Miao Chen , Min-Ling Zhang , Xiao Song , Jun Jiang , Xiaoqian Tang , Qi Zhang , Xiuhua Zhang , Peiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785
-
[6]
Xu Luo , Jinwen Xiao , Qiming Yang , Xiaolong Lu , Qianjun Huang , Xiaojun Ai , Bo Li , Li Sun , Long Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684
-
[7]
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
-
[8]
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
-
[9]
Yuqing Liu , Yu Yang , Yuhan E , Changlong Pang , Di Cui , Ang Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651
-
[10]
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
-
[11]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[12]
Shunliu Deng , Haifeng Su , Yaxian Zhu , Yuzhi Wang , Yuhua Weng , Zhaobin Chen , Shunü Peng , Yinyun Lü , Xinyi Hong , Yiru Wang , Xiaozhen Huang , Zhimin Lin , Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002
-
[13]
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
-
[14]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[15]
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
-
[16]
Guoping Yang , Zhoufu Lin , Xize Zhang , Jiawei Cao , Xuejiao Chen , Yufeng Liu , Xiaoling Lin , Ke Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274
-
[17]
Xingwen Cheng , Haoran Ren , Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306
-
[18]
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
-
[19]
Ran Cen , Yan-Yan Tang , Li-Xia Chen , Zhu Tao , Xin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744
-
[20]
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(707)
- HTML views(1)