Citation: Hui Li, Ying-Wei Yang. Gold nanoparticles functionalized with supramolecular macrocycles[J]. Chinese Chemical Letters, ;2013, 24(07): 545-552. shu

Gold nanoparticles functionalized with supramolecular macrocycles

  • Corresponding author: Ying-Wei Yang, 
  • Received Date: 28 February 2013
    Available Online: 9 April 2013

  • Gold nanoparticles (AuNPs) functionalized with supramolecular macrocycles are versatile and diverse hybrid nanomaterials, which combine and enhance the characteristics of the two components. In this mini-review, we summarize the recent research progress on the synthesis and assembly of AuNPs functionalized with different supramolecular macrocyclic compounds, i.e., crown ethers, cyclophanes, cyclodextrins (CDs), cucurbit[n]urils (CB[n]), calix[n]arenes, and pillar[n]arenes (P[n]A). Meanwhile, applications of these supramolecular hybrid nanomaterials in the fields of sensors, biomedicine and plasmonic devices are also presented.
  • 加载中
    1. [1]

      [1] Z.Y. Zhou, N. Tian, J.T. Li, I. Broadwell, S.G. Sun, Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage, Chem. Soc. Rev. 40 (2011) 4167-4185.

    2. [2]

      [2] M.C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293-346.

    3. [3]

      [3] K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing, Chem. Rev. 112 (2012) 2739-2779.

    4. [4]

      [4] Y.B. Zheng, Y.W. Yang, L. Jensen, et al., Active molecular plasmonics: controlling plasmon resonances with molecular switches, Nano Lett. 9 (2009) 819-825.

    5. [5]

      [5] Y.B. Zheng, B. Kiraly, S. Cheunkar, T.J. Huang, P.S. Weiss, Incident-angle-modulated molecular plasmonic switches: a case of weak exciton-plasmon coupling, Nano Lett. 11 (2011) 2061-2065.

    6. [6]

      [6] E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine, Chem. Soc. Rev. 41 (2012) 2740-2779.

    7. [7]

      [7] M. Chen, D.W. Goodman, Catalytically active gold on ordered titania supports, Chem. Soc. Rev. 37 (2008) 1860-1870.

    8. [8]

      [8] D.S. dos Santos, R.A. Alvarez-Puebla, O.N. Oliveira, R.F. Aroca, Controlling the size and shape of gold nanoparticles in fulvic acid colloidal solutions and their optical characterization using SERS, J. Mater. Chem. 15 (2005) 3045-3049.

    9. [9]

      [9] Y. Ofir, B. Samanta, V.M. Rotello, Polymer and biopolymer mediated self-assembly of gold nanoparticles, Chem. Soc. Rev. 37 (2008) 1814-1823.

    10. [10]

      [10] R. Klajn, J.F. Stoddart, B.A. Grzybowski, Nanoparticles functionalised with reversible molecular and supramolecular switches, Chem. Soc. Rev. 39 (2010) 2203-2237.

    11. [11]

      [11] R. Shenhar, T.B. Norsten, V.M. Rotello, Polymer-mediated nanoparticle assembly: structural control and applications, Adv. Mater. 17 (2005) 657-669.

    12. [12]

      [12] S.Y. Lin, C.H. Chen, M.C. Lin, H.F. Hsu, A cooperative effect of bifunctionalized nanoparticles on recognition: sensing alkali ions by crown and carboxylate moieties in aqueous media, Anal. Chem. 77 (2005) 4821-4828.

    13. [13]

      [13] M.L. Ho, J.M. Hsieh, C.W. Lai, et al., 15-crown-5 functionalized Au nanoparticles synthesized via single molecule exchange on silica nanoparticles: its application to probe 15-crown-5/K+/15-crown-5 "sandwiches" as linking mechanisms, J. Phys. Chem. C 113 (2009) 1686-1693.

    14. [14]

      [14] R. de la Rica, R.M. Fratila, A. Szarpak, J. Huskens, A.H. Velders, Multivalent nanoparticle networks as ultrasensitive enzyme sensors, Angew. Chem. Int. Ed. 50 (2011) 5703-5706.

    15. [15]

      [15] R. de la Rica, A.H. Velders, Supramolecular Au nanoparticle assemblies as optical probes for enzyme-linked immunoassays, Small 7 (2011) 66-69.

    16. [16]

      [16] H. Li, D.X. Chen, Y.L. Sun, et al., Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles, J. Am. Chem. Soc. 135 (2013) 1570-1576.

    17. [17]

      [17] M. Adeli, R.S. Sarabi, R.Y. Farsi, M. Mahmoudi, M. Kalantari, Polyrotaxane/gold nanoparticle hybrid nanomaterials as anticancer drug delivery systems, J. Mater. Chem. 21 (2011) 18686-18695.

    18. [18]

      [18] D.N. Heo, D.H. Yang, H.J. Moon, et al., Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy, Biomaterials 33 (2012) 856-866.

    19. [19]

      [19] C. Kim, S.S. Agasti, Z. Zhu, L. Isaacs, V.M. Rotello, Recognition-mediated activation of therapeutic gold nanoparticles inside living cells, Nat. Chem. 2 (2010) 962-966.

    20. [20]

      [20] Y. Liu, Y.W. Yang, Y. Chen, Thio[2-(benzoylamino)ethylamino]-β-CD fragment modified gold nanoparticles as recycling extractors for [60]fullerene, Chem. Commun. (2005) 4208-4210.

    21. [21]

      [21] B. Kim, S.L. Tripp, A. Wei, Self-organization of large gold nanoparticle arrays, J. Am. Chem. Soc. 123 (2001) 7955-7956.

    22. [22]

      [22] D.S. Guo, Y. Liu, Calixarene-based supramolecular polymerization in solution, Chem. Soc. Rev. 41 (2012) 5907-5921.

    23. [23]

      [23] G.W. Gokel, W.M. Leevy, M.E. Weber, Crown ethers: sensors for ions and molecular scaffolds for materials and biological models, Chem. Rev. 104 (2004) 2723-2750.

    24. [24]

      [24] R. Villalonga, R. Cao, A. Fragoso, Supramolecular chemistry of cyclodextrins in enzyme technology, Chem. Rev. 107 (2007) 3088-3116.

    25. [25]

      [25] J.W. Lee, S. Samal, N. Selvapalam, H.J. Kim, K. Kim, Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry, Acc. Chem. Rev. 36 (2003) 621-630.

    26. [26]

      [26] Y.L. Sun, B.J. Yang, S.X.A. Zhang, Y.W. Yang, Cucurbit[7]uril pseudorotaxane-based photoresponsive supramolecular nanovalve, Chem. Eur. J. 18 (2012) 9212-9216.

    27. [27]

      [27] Y.L. Sun, Y.W. Yang, W. Wu, S.X.A. Zhang, Supramolecular nanovalve systems based on macrocyclic synthetic receptors, Chem. J. Chin. Univ. 33 (2012) 1635-1642.

    28. [28]

      [28] Y.W. Yang, Towards biocompatible nanovalves based on mesoporous silica nanoparticles, Med. Chem. Commun. 2 (2011) 1033-1049.

    29. [29]

      [29] W.R. Dichtel, O.S. Miljanic, W. Zhang, et al., Kinetic and thermodynamic approaches for the efficient formation of mechanical bonds, Acc. Chem. Rev. 41 (2008) 1750-1761.

    30. [30]

      [30] B.K. Juluri, A.S. Kumar, Y. Liu, et al., A mechanical actuator driven electrochemically by artificial molecular muscles, ACS Nano 3 (2009) 291-300.

    31. [31]

      [31] Y.W. Yang, C.J. Li, H.Y. Zhang, Y. Liu, Molecular design of crown ethers. 22. synthesis of benzocrown ether derivatives and their solvent extraction with univalent/bivalent metal picrates, Chin. J. Chem. 22 (2004) 616-618.

    32. [32]

      [32] Y.W. Yang, H.Y. Zhang, Y. Liu, Syntheses of dibenzo-18-crown-6 lariat isomers and their complexation with lanthanoid nitrates, Supramol. Chem. 20 (2008) 731-736.

    33. [33]

      [33] S.Y. Lin, S.W. Liu, C.M. Lin, C.H. Chen, Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles, Anal. Chem. 74 (2002) 330-335.

    34. [34]

      [34] R. Klajn, L. Fang, A. Coskun, et al., Metal nanoparticles functionalized with molecular and supramolecular switches, J. Am. Chem. Soc. 131 (2009) 4233-4235.

    35. [35]

      [35] M.A. Olson, A. Coskun, R. Klajn, et al., Assembly of polygonal nanoparticle clusters directed by reversible noncovalent bonding interactions, Nano Lett. 9 (2009) 3185-3190.

    36. [36]

      [36] R. Klajn, M.A. Olson, P.J. Wesson, et al., Dynamic hook-and-eye nanoparticle sponges, Nat. Chem. 1 (2009) 733-738.

    37. [37]

      [37] J. Liu, S. Mendoza, E. Roman, et al., Cyclodextrin-modified gold nanospheres. Host-guest interactions at work to control colloidal properties, J. Am. Chem. Soc. 121 (1999) 4304-4305.

    38. [38]

      [38] J. Liu, J. Alvarez, W. Ong, A.E. Kaifer, Network aggregates formed by C60 and gold nanoparticles capped with γ-cyclodextrin hosts, Nano Lett. 1 (2001) 57-60.

    39. [39]

      [39] J. Liu, J. Alvarez, W. Ong, E. Roman, A.E. Kaifer, Phase transfer of hydrophilic, cyclodextrin-modified gold nanoparticles to chloroform solutions, J. Am. Chem. Soc. 123 (2001) 11148-11154.

    40. [40]

      [40] Y.L. Liu, K.B. Male, P. Bouvrette, J.H.T. Luong, Control of the size and distribution of gold nanoparticles by unmodified cyclodextrins, Chem. Mater. 15 (2003) 4172-4180.

    41. [41]

      [41] J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins, J. Am. Chem. Soc. 126 (2004) 7176-7177.

    42. [42]

      [42] Y. Chen, Y. Liu, Supramolecular assembly of cyclodextrins and its interactions with nucleic acid, Chin. J. Org. Chem. 32 (2012) 805-814.

    43. [43]

      [43] Y. Liu, S.H. Song, Y.W. Yang, Y. Chen, Cyclodextrin-modified gold nanoparticle aggregate formed by simple host-guest interactions with 1,10-phenanthroline, J. Chem. Res., Synop. (2004) 152-153.

    44. [44]

      [44] Y. Liu, H. Wang, Y. Chen, C.F. Ke, M. Liu, Supramolecular aggregates constructed from gold nanoparticles and L-Try-CD polypseudorotaxanes as captors for fullerenes, J. Am. Chem. Soc. 127 (2005) 657-666.

    45. [45]

      [45] Y. Liu, Y.L. Zhao, Y. Chen, M. Wang, Supramolecular assembly of gold nanoparticles mediated by polypseudorotaxane with thiolated β-cyclodextrin, Macromol. Rapid Commun. 26 (2005) 401-406.

    46. [46]

      [46] H. Wang, Y. Chen, X.Y. Li, Y. Liu, Synthesis of oligo(ethylenediamino)-β-cyclodextrin modified gold nanoparticle as a DNA concentrator, Mol. Pharmacol. 4 (2007) 189-198.

    47. [47]

      [47] Y.L. Zhao, Y. Chen, M. Wang, Y. Liu, Mult[2]rotaxanes with gold nanoparticles as centers, Org. Lett. 8 (2006) 1267-1270.

    48. [48]

      [48] Q. An, G. Li, C. Tao, et al., A general and efficient method to form self-assembled cucurbit[n]uril monolayers on gold surfaces, Chem. Commun. (2008) 1989-1991.

    49. [49]

      [49] T.C. Lee, O.A. Scherman, Formation of dynamic aggregates in water by cucurbit[ 5]uril capped with gold nanoparticles, Chem. Commun. 46 (2010) 2438-2440.

    50. [50]

      [50] T.C. Lee, O.A. Scherman, A facile synthesis of dynamic supramolecular aggregates of cucurbit[n]uril (n = 5-8) capped with gold nanoparticles in aqueous media, Chem. Eur. J. 18 (2012) 1628-1633.

    51. [51]

      [51] R.W. Taylor, T.C. Lee, O.A. Scherman, et al., Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "Glue", ACS Nano 5 (2011) 3878-3887.

    52. [52]

      [52] C.A. Tao, Q. An, W. Zhu, et al., Cucurbit[n]urils as a SERS hot-spot nanocontainer through bridging gold nanoparticles, Chem. Commun. 47 (2011) 9867-9869.

    53. [53]

      [53] J.S. Kim, D.T. Quang, Calixarene-derived fluorescent probes, Chem. Rev. 107 (2007) 3780-3799.

    54. [54]

      [54] A. Wei, Calixarene-encapsulated nanoparticles: self-assembly into functional nanomaterials, Chem. Commun. 42 (2006) 1581-1591.

    55. [55]

      [55] K.B. Stavens, S.V. Pusztay, S.H. Zou, R.P. Andres, A. Wei, Encapsulation of neutral gold nanoclusters by resorcinarenes, Langmuir 15 (1999) 8337-8339.

    56. [56]

      [56] R. Balasubramanian, B. Kim, S.L. Tripp, et al., Dispersion and stability studies of resorcinarene-encapsulated gold nanoparticles, Langmuir 18 (2002) 3676-3681.

    57. [57]

      [57] P.J. Cragg, K. Sharma, Pillar[5]arenes: fascinating cyclophanes with a bright future, Chem. Soc. Rev. 41 (2012) 597-607.

    58. [58]

      [58] X.Y. Hu, X. Wu, Q. Duan, et al., Novel pillar[5]arene-based dynamic polyrotaxanes interlocked by the quadruple hydrogen bonding ureidopyrimidinone motif, Org. Lett. 14 (2012) 4826-4829.

    59. [59]

      [59] T. Ogoshi, K. Masaki, R. Shiga, K. Kitajima, T.A. Yamagishi, Planar-chiral macrocyclic host pillar[5]arene: no rotation of units and isolation of enantiomers by introducing bulky substituents, Org. Lett. 13 (2011) 1264-1266.

    60. [60]

      [60] N.L. Strutt, D. Fairen-Jimenez, J. Iehl, et al., Incorporation of an A1/A2-difunctionalized pillar[5]arene into a metal-organic framework, J. Am. Chem. Soc. 134 (2012) 17436-17439.

    61. [61]

      [61] L. Chen, W. Si, L. Zhang, et al., Chiral selective transmembrane transport of amino acids through artificial channels, J. Am. Chem. Soc. 135 (2013) 2152-2155.

    62. [62]

      [62] C. Li, J. Ma, L. Zhao, et al., Molecular selective binding of basic amino acids by a water-soluble pillar[5]arene, Chem. Commun. 49 (2013) 1924-1926.

    63. [63]

      [63] K. Wang, Y.W. Yang, S.X.A. Zhang, Research progress on the synthesis of pillar[n]arenes and their host-guest chemistry, Chem. J. Chin. Univ. 33 (2012) 1-13.

    64. [64]

      [64] K. Wang, L.L. Tan, D.X. Chen, et al., One-pot synthesis of pillar[n]arenes catalyzed by a minimum amount of TfOH and a solution-phase mechanistic study, Org. Biomol. Chem. 10 (2012) 9405-9409.

    65. [65]

      [65] Y. Yao, M. Xue, X. Chi, et al., A new water-soluble pillar[5]arene: synthesis and application in the preparation of gold nanoparticles, Chem. Commun. 48 (2012) 6505-6507.

    66. [66]

      [66] E. Blanco, C. Quintana, L. Hernandez, P. Hernandez, Atomic force microscopy study of new sensing platforms: cucurbit[n]uril (n = 6, 7) on gold, Electroanalysis 25 (2013) 263-268.

    67. [67]

      [67] L. Veverkova, P. Zvatora, K. Zaruba, V. Kral, Receptor modified gold and silver nanoparticles: effect on interactions with oxoanions, Analyst 138 (2013) 333-338.

  • 加载中
    1. [1]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    2. [2]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    3. [3]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    4. [4]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    5. [5]

      Miao-Miao ChenMin-Ling ZhangXiao SongJun JiangXiaoqian TangQi ZhangXiuhua ZhangPeiwu Li . Smartphone-assisted electrochemiluminescence imaging test strips towards dual-signal visualized and sensitive monitoring of aflatoxin B1 in corn samples. Chinese Chemical Letters, 2025, 36(1): 109785-. doi: 10.1016/j.cclet.2024.109785

    6. [6]

      Xu LuoJinwen XiaoQiming YangXiaolong LuQianjun HuangXiaojun AiBo LiLi SunLong Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684

    7. [7]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    8. [8]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    9. [9]

      Yuqing LiuYu YangYuhan EChanglong PangDi CuiAng Li . Insight into microbial synthesis of metal nanomaterials and their environmental applications: Exploration for enhanced controllable synthesis. Chinese Chemical Letters, 2024, 35(11): 109651-. doi: 10.1016/j.cclet.2024.109651

    10. [10]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    11. [11]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    12. [12]

      Shunliu Deng Haifeng Su Yaxian Zhu Yuzhi Wang Yuhua Weng Zhaobin Chen Shunü Peng Yinyun Lü Xinyi Hong Yiru Wang Xiaozhen Huang Zhimin Lin Lansun Zheng . Course Ideological and Political Design for Self-Building Experiments of Scientific Instruments: Taking the Construction, Debugging, and Application of Teaching Mass Spectrometer as an Example. University Chemistry, 2024, 39(2): 127-132. doi: 10.3866/PKU.DXHX202308002

    13. [13]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    16. [16]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    17. [17]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    18. [18]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    19. [19]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    20. [20]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

Metrics
  • PDF Downloads(0)
  • Abstract views(707)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return