Citation:
Cheng Feng, Hai-Yan Zhang, Ning-Zhao Shang, Shu-Tao Gao, Chun Wang. Magnetic graphene nanocomposite as an efficient catalyst for hydrogenation of nitroarenes[J]. Chinese Chemical Letters,
;2013, 24(6): 539-541.
-
Graphene-Fe3O4 nanocomposite (G-Fe3O4) was synthesized by a chemical co-precipitation method which was used as an efficient catalyst for the reduction of nitroarenes with hydrazine hydrate. The method has been applied to a broad range of compounds with different properties and the yields were in the range of 75%-92%. The G-Fe3O4 catalyst can be readily recovered and reused 5 times without significant loss of the catalytic activity.
-
Keywords:
- Nitroarenes,
- Magnetic graphene,
- Reduction,
- Hydrazine hydrate
-
-
-
[1]
[1] G.A. Heropoulos, S. Georgakopoulos, B.R. Steele, High intensity ultrasoundassisted reduction of sterically demanding nitroaromatics, Tetrahedron Lett. 46 (2005) 2469-2473.
-
[2]
[2] I. Pogorelić, M. Filipan-Litvić, S. Merkaš, Efficient and selective reduction of aromatic nitrocompounds with sodium borohydride and Raney nickel, J. Mol. Catal. A: Chem. 274 (2007) 202-207.
-
[3]
[3] M. Lakshmi Kantam, T. Bandyopadhyay, A. Rahman, N. Mahender Reddy, B.M. Choudary, Reduction of nitroaromatics with a new heterogenised MCM-silylamine palladium (Ⅱ) catalyst, J. Mol. Catal. A: Chem. 133 (1998) 293-295.
-
[4]
[4] S. Kumar Ghosh, M. Mandal, S. Kundu, S. Nath, T. Pal, Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitrocompounds by sodium borohydride in aqueous solution, Appl. Catal. A 268 (2004) 61-66.
-
[5]
[5] L. Pehlivan, E. Métay, S. Laval, et al., Iron-catalyzed selective reduction of nitro compounds to amines, Tetrahedron Lett. 51 (2010) 1939-1941.
-
[6]
[6] F.A. Khan, J. Dash, C. Sudheer, R.K. Gupta, Chemoselective reduction of aromatic nitro and azo compounds in ionic liquids using zinc and ammonium salts, Tetrahedron Lett. 44 (2003) 7783-7787.
-
[7]
[7] M. Kumarraja, K. Pitchumani, Simple and efficient reduction of nitroarenes by hydrazine in faujasite zeolites, Appl. Catal. A 265 (2004) 135-139.
-
[8]
[8] S.R. Boothroyd, M.A. Kerr, A mild and efficient method for the preparation of anilines from nitroarenes, Tetrahedron Lett. 36 (1995) 2411-2414.
-
[9]
[9] S. Farhadi, F. Siadatnasab, Perovskite-type LaFeO3 nanoparticles prepared by thermal decomposition of the La[Fe(CN)6] 5H2O complex: a new reusable catalyst for rapid and efficient reduction of aromatic nitro compounds to arylamines with propan-2-ol under microwave irradiation, J. Mol. Catal. A: Chem. 339 (2011) 108-116.
-
[10]
[10] S.K. Mohapatra, S.U. Sonavane, R.V. Jayaram, P. Selvam, Reductive cleavage of azo dyes and reduction of nitroarenes over trivalent iron incorporated hexagonal mesoporous aluminophosphate molecular sieves, Appl. Catal. B 46 (2003) 155-163.
-
[11]
[11] F. Cárdenas-Lizanaa, Z.M. de Pedrob, S. Gómez-Queroa, M.A. Keanea, Gas phase hydrogenation of nitroarenes: a comparison of the catalytic action of titania supported gold and silver, J. Mol. Catal. A: Chem. 326 (2010) 48-54.
-
[12]
[12] A.K. Geim, K.S. Novoselov, The rise of grapheme, Nat. Mater. 6 (2007) 183-191.
-
[13]
[13] Y.J. Gao, D. Ma, C.L. Wang, J. Guan, X.H. Bao, Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature, Chem. Commun. 47 (2011) 2432-2434.
-
[14]
[14] S. Shylesh, V. Schunemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.
-
[15]
[15] A.H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46 (2007) 1222-1244.
-
[16]
[16] X.P. Shen, J.L. Wu, S. Bai, H. Zhou, One-pot solvothermal syntheses and magnetic properties of graphene-based magnetic nanocomposites, J. Alloys Compd. 506 (2010) 136-140.
-
[17]
[17] J.J. Ma, X. Zhou, X.H. Zang, C. Wang, Z. Wang, A green and efficient synthesis of 9-aryl-3,4,5,6,7,9-hexahydroxanthene-1,8-dione using a task-specific ionic liquid as dual catalyst and solvent, Aust. J. Chem. 60 (2007) 146-148.
-
[18]
[18] C. Wang, C. Feng, Y.J. Gao, et al., Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution, Chem. Eng. J. 173 (2011) 92-97.
-
[19]
[19] N.R. Khalid, Z.K. Hong, E. Ahmed, Y.W. Zhang, C.N. He, Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light, Appl. Surf. Sci. 258 (2012) 5827-5834.
-
[1]
-
-
-
[1]
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
-
[2]
Guodong Xu , Chengcai Sheng , Xiaomeng Zhao , Tuojiang Zhang , Zongtang Liu , Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094
-
[3]
Qiang Cao , Xue-Feng Cheng , Jia Wang , Chang Zhou , Liu-Jun Yang , Guan Wang , Dong-Yun Chen , Jing-Hui He , Jian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759
-
[4]
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
-
[5]
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
-
[6]
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376
-
[7]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[8]
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
-
[9]
Sajid Mahmood , Haiyan Wang , Fang Chen , Yijun Zhong , Yong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550
-
[10]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[11]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[12]
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
-
[13]
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
-
[14]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193
-
[15]
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
-
[16]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[17]
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
-
[18]
Zhen Dai , Linzhi Tan , Yeyu Su , Kerui Zhao , Yushun Tian , Yu Liu , Tao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121
-
[19]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[20]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(669)
- HTML views(3)