Citation: Cheng Feng, Hai-Yan Zhang, Ning-Zhao Shang, Shu-Tao Gao, Chun Wang. Magnetic graphene nanocomposite as an efficient catalyst for hydrogenation of nitroarenes[J]. Chinese Chemical Letters, ;2013, 24(6): 539-541. shu

Magnetic graphene nanocomposite as an efficient catalyst for hydrogenation of nitroarenes

  • Corresponding author: Chun Wang, 
  • Received Date: 21 January 2013
    Available Online: 27 February 2013

  • Graphene-Fe3O4 nanocomposite (G-Fe3O4) was synthesized by a chemical co-precipitation method which was used as an efficient catalyst for the reduction of nitroarenes with hydrazine hydrate. The method has been applied to a broad range of compounds with different properties and the yields were in the range of 75%-92%. The G-Fe3O4 catalyst can be readily recovered and reused 5 times without significant loss of the catalytic activity.
  • 加载中
    1. [1]

      [1] G.A. Heropoulos, S. Georgakopoulos, B.R. Steele, High intensity ultrasoundassisted reduction of sterically demanding nitroaromatics, Tetrahedron Lett. 46 (2005) 2469-2473.

    2. [2]

      [2] I. Pogorelić, M. Filipan-Litvić, S. Merkaš, Efficient and selective reduction of aromatic nitrocompounds with sodium borohydride and Raney nickel, J. Mol. Catal. A: Chem. 274 (2007) 202-207.

    3. [3]

      [3] M. Lakshmi Kantam, T. Bandyopadhyay, A. Rahman, N. Mahender Reddy, B.M. Choudary, Reduction of nitroaromatics with a new heterogenised MCM-silylamine palladium (Ⅱ) catalyst, J. Mol. Catal. A: Chem. 133 (1998) 293-295.

    4. [4]

      [4] S. Kumar Ghosh, M. Mandal, S. Kundu, S. Nath, T. Pal, Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitrocompounds by sodium borohydride in aqueous solution, Appl. Catal. A 268 (2004) 61-66.

    5. [5]

      [5] L. Pehlivan, E. Métay, S. Laval, et al., Iron-catalyzed selective reduction of nitro compounds to amines, Tetrahedron Lett. 51 (2010) 1939-1941.

    6. [6]

      [6] F.A. Khan, J. Dash, C. Sudheer, R.K. Gupta, Chemoselective reduction of aromatic nitro and azo compounds in ionic liquids using zinc and ammonium salts, Tetrahedron Lett. 44 (2003) 7783-7787.

    7. [7]

      [7] M. Kumarraja, K. Pitchumani, Simple and efficient reduction of nitroarenes by hydrazine in faujasite zeolites, Appl. Catal. A 265 (2004) 135-139.

    8. [8]

      [8] S.R. Boothroyd, M.A. Kerr, A mild and efficient method for the preparation of anilines from nitroarenes, Tetrahedron Lett. 36 (1995) 2411-2414.

    9. [9]

      [9] S. Farhadi, F. Siadatnasab, Perovskite-type LaFeO3 nanoparticles prepared by thermal decomposition of the La[Fe(CN)6] 5H2O complex: a new reusable catalyst for rapid and efficient reduction of aromatic nitro compounds to arylamines with propan-2-ol under microwave irradiation, J. Mol. Catal. A: Chem. 339 (2011) 108-116.

    10. [10]

      [10] S.K. Mohapatra, S.U. Sonavane, R.V. Jayaram, P. Selvam, Reductive cleavage of azo dyes and reduction of nitroarenes over trivalent iron incorporated hexagonal mesoporous aluminophosphate molecular sieves, Appl. Catal. B 46 (2003) 155-163.

    11. [11]

      [11] F. Cárdenas-Lizanaa, Z.M. de Pedrob, S. Gómez-Queroa, M.A. Keanea, Gas phase hydrogenation of nitroarenes: a comparison of the catalytic action of titania supported gold and silver, J. Mol. Catal. A: Chem. 326 (2010) 48-54.

    12. [12]

      [12] A.K. Geim, K.S. Novoselov, The rise of grapheme, Nat. Mater. 6 (2007) 183-191.

    13. [13]

      [13] Y.J. Gao, D. Ma, C.L. Wang, J. Guan, X.H. Bao, Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature, Chem. Commun. 47 (2011) 2432-2434.

    14. [14]

      [14] S. Shylesh, V. Schunemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.

    15. [15]

      [15] A.H. Lu, E.L. Salabas, F. Schuth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46 (2007) 1222-1244.

    16. [16]

      [16] X.P. Shen, J.L. Wu, S. Bai, H. Zhou, One-pot solvothermal syntheses and magnetic properties of graphene-based magnetic nanocomposites, J. Alloys Compd. 506 (2010) 136-140.

    17. [17]

      [17] J.J. Ma, X. Zhou, X.H. Zang, C. Wang, Z. Wang, A green and efficient synthesis of 9-aryl-3,4,5,6,7,9-hexahydroxanthene-1,8-dione using a task-specific ionic liquid as dual catalyst and solvent, Aust. J. Chem. 60 (2007) 146-148.

    18. [18]

      [18] C. Wang, C. Feng, Y.J. Gao, et al., Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution, Chem. Eng. J. 173 (2011) 92-97.

    19. [19]

      [19] N.R. Khalid, Z.K. Hong, E. Ahmed, Y.W. Zhang, C.N. He, Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light, Appl. Surf. Sci. 258 (2012) 5827-5834.

  • 加载中
    1. [1]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    2. [2]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    3. [3]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    4. [4]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    5. [5]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    6. [6]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    7. [7]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    8. [8]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    9. [9]

      Sajid MahmoodHaiyan WangFang ChenYijun ZhongYong Hu . Recent progress and prospects of electrolytes for electrocatalytic nitrogen reduction toward ammonia. Chinese Chemical Letters, 2024, 35(4): 108550-. doi: 10.1016/j.cclet.2023.108550

    10. [10]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    11. [11]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    12. [12]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    13. [13]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    14. [14]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193

    15. [15]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    16. [16]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    17. [17]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    18. [18]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    19. [19]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    20. [20]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

Metrics
  • PDF Downloads(0)
  • Abstract views(669)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return