Citation:
Shuai Mua, Xiao-Shuai Xie, Duan Niu, Da-Shuai Zhang, Deng-Ke Liu, Chang-Xiao Liu. Synthesis and biological evaluation of novel derivatives of desloratadine[J]. Chinese Chemical Letters,
;2013, 24(6): 531-534.
-
Series of novel derivatives of desloratadine designed as arginine vasopressin receptor antagonists were synthesized and structurally characterized by melting points, 1H NMR and HRMS. Their in vivo diuretic activities were evaluated on rats, and several target compounds showed promising diuretic results, especially compounds 8, 18, 27 and 31. Further in vitro bonding assay and cAMP assay showed that these compounds had a higher affinity to vasopressin V2 receptor than V1a receptor. Our studies indicated that desloratadine may be an active substructure for novel arginine vasopressin receptor antagonist development.
-
-
-
[1]
[1] P. Sanghi, B.F. Uretsky, E.R. Schwarz, Vasopressin antagonism: a future treatment option in heart failure, Eur. Heart J. 26 (2005) 538-543.
-
[2]
[2] G. Decaux, A. Soupart, G. Vassart, Non-peptide arginine-vasopressin antagonists: the vaptans, The Lancet 371 (2008) 1624-1632.
-
[3]
[3] R. Lemmens-Gruber, M. Kamyar, Vasopressin antagonists, Cell. Mol. Life Sci. 63 (2006) 1766-1779.
-
[4]
[4] F. Ali, M.A. Raufi, B. Washington, Conivaptan: a dual receptor vasopressin V-1a/V-2 antagonist, Cardiovasc. Drug Rev. 25 (2007) 261-279.
-
[5]
[5] S.K. Kumar, P.J. Mather, AVP receptor antagonists in patients with CHF, Heart Fail. Rev. 14 (2009) 83-86.
-
[6]
[6] T. Miyazaki, H. Fujiki, Y. Yamamura, Tolvaptan, an orally active vasopressin V-2-receptor antagonist-pharmacology and clinical trials, Cardiovasc. Drug Rev. 25 (2007) 1-13.
-
[7]
[7] 3: 1H NMR (400 MHz, CDCl3): δ 2.08 (s, 3H), 2.29-2.53 (m, 4H), 2.76-2.88 (m, 2H), 3.12-3.40 (m, 4H), 3.61-3.67 (m, 1H), 3.99-4.07 (m, 1H), 7.07-7.16 (m, 4H), 7.42 (d, 1H, J = 7.6 Hz), 8.38 (d, 1H, J = 3.2 Hz). 4: 1H NMR (400 MHz, CDCl3): δ 1.14 (t, 3H, J = 7.4 Hz), 2.34-2.72 (m, 6H), 2.76-2.89 (m, 2H), 3.12-3.43 (m, 4H), 3.64-3.70 (m, 1H), 4.03-4.11 (m, 1H), 7.08-7.17 (m, 4H), 7.43-7.45 (d, 1H, J = 7.6 Hz), 8.40 (d, 1H, J = 3.6 Hz). 5: 1H NMR (400 MHz, CDCl3): δ 1.13 (dd, 6H, J1 = 9.28.0 Hz, J2 = 9.216.0 Hz), 2.32-2.58 (m, 4H), 2.76-2.89 (m, 3H), 3.10-3.43 (m, 4H), 3.71-3.77 (m, 1H), 4.05-4.12 (m, 1H), 7.08-7.17 (m, 4H), 7.44 (d, 1H, J = 7.2 Hz), 8.40 (d, 1H, J = 3.6 Hz). 6: 1H NMR (400 MHz, CDCl3): δ 0.96 (t, 3H, J = 9.2 Hz), 1.63-1.78 (m, 2H), 2.33-2.40 (m, 5H), 2.45-2.56 (m, 1H), 2.57-2.89 (m, 2H), 3.10-3.43 (m, 4H), 3.64-3.72 (m, 1H), 7.08-7.17 (m, 4H), 7.43 (d, 1H, J = 7.6 Hz), 8.39-8.41 (t, 1H, J = 2.2 Hz). 7: 1H NMR (400 MHz, CDCl3): δ 1.62-1.75 (m, 3H), 2.39-2.48 (m, 3H), 2.49-2.66 (m, 1H), 2.68-2.88 (m, 2H), 2.99-3.29 (m, 1H), 3.31-3.49 (m, 3H), 3.65-4.23 (m, 2H), 4.54-4.62 (m, 1H), 7.08-7.17 (m, 4H), 7.43 (d, 1H, J = 7.6 Hz), 8.40 (d, 1H, J = 3.6 Hz). 8: 1H NMR (400 MHz, CDCl3): δ 2.09-2.19 (m, 2H), 2.30-2.43 (m, 3H), 2.46-2.59 (m, 3H), 2.76-2.89 (m, 2H), 3.08-3.42 (m, 4H), 3.62-4.10 (m, 4H), 7.08-7.17 (m, 4H), 7.44 (d, 1H, J = 7.6 Hz), 8.40 (d, 1H, J = 4.8 Hz). 9: 1H NMR (400 MHz, CDCl3): δ 1.37 (t, 3H, J = 14.2 Hz), 2.37-2.45 (m, 2H), 2.47-2.51 (m, 1H), 2.52-2.65 (m, 1H), 2.76-2.90 (m, 2H), 2.96 (q, 2H, J = 7.5 Hz), 3.13-3.20 (m, 2H), 3.30-3.42 (m, 2H), 3.47-3.66 (m, 2H), 7.09-7.18 (m, 4H), 7.44 (dd, 1H, J1 = 9.21.2 Hz, J2 = 9.28.8 Hz), 8.40 (dd, 1H, J1 = 9.21.2 Hz, J2 = 9.25.6 Hz). 10: 1H NMR (400 MHz, CDCl3): δ 2.49-2.54 (m, 3H), 2.60-2.66 (m, 1H), 2.75-2.89 (m, 2H), 3.00-3.06 (m, 2H), 3.28-3.47 (m, 4H), 6.01 (d, 1H, J = 10.0 Hz), 6.22 (d, 1H, J = 16.4 Hz), 6.43 (dd, 1H, J1 = 9.26.0 Hz, J2 = 9.216.8 Hz), 7.07-7.17 (m, 4H), 7.43 (d, 1H, J = 8.8 Hz), 8.39 (d, 1H, J = 6.0 Hz). 11: 1H NMR (400 MHz, CDCl3): δ 2.31-2.58 (m, 4H), 2.76-2.89 (m, 2H), 3.22-3.43 (m, 4H), 3.62 (br s, 1H), 4.14 (br s, 1H), 7.11-7.46 (m, 10H), 8.38 (br s, 1H). 12: 1H NMR (400 MHz, CDCl3): δ 2.28-2.64 (m, 6H), 2.75-2.95 (m, 2H), 3.078 (br s, 1H), 3.29-3.44 (m, 4H), 4.26 (br s, 1H), 7.04-7.46 (m, 9H), 8.33 (d, 0.5H, J = 3.6 Hz), 8.43 (d, 0.5H, J = 3.6 Hz). 13: 1H NMR (400 MHz, CDCl3): δ 2.35-2.50 (m, 7H), 2.77-2.89 (m, 2H), 3.27-3.42 (m, 4H), 3.66 (br s, 1H), 4.16 (br s, 1H), 7.12-7.44 (m, 9H), 8.38 (br s, 1H). 14: 1H NMR (400 MHz, CDCl3): δ 2.33-2.48 (m, 7H), Table 2 The substituents, melting points, HRMS, purity and diuretic activity of compounds 11-31. Compound X R2 Melting point (8C) ESI-HRMS [M+H]+ Purity (HPLC, %) Total volume of urine (0-20 h, mL) 11 CO H 91.3-92.6 415.1572 98.3 6.6 3.7 12 CO 2-CH3 80.5-81.3 429.1726 99.1 5.8 3.2 13 CO 4-CH3 165.2-165.8 429.1724 98.2 9.6 2.1 14 CO 3-CH3 93.6-94.8 429.1732 98.3 8.0 4.4 15 CO 2-Cl 109.5-110.8 449.1190 99.9 5.8 3.1 16 CO 3-Cl 96.0-96.8 449.1185 96.8 5.9 4.5 17 CO 2-F 129.8-131.5 433.1481 97.2 6.0 2.4 18 CO 2,5-DiF 159.5-161.0 451.1385 97.4 21.1 5.6 19 CO 2-OCH3 105.2-107.9 445.1676 99.3 16.8 4.8 20 CO 3-OCH3 71.2-72.8 445.1676 99.9 11.5 1.9 21 CO 3-NO2 193.8-194.6 460.1427 99.9 9.6 4.1 22 CO 4-NO2 188.2-189.0 460.1427 98.9 9.5 0.7 23 SO2 2-CH3 92.8-94.9 465.1395 99.6 14.9 4.0 24 SO2 4-CH3 209.2-209.7 465.1395 99.9 5.4 2.4 25 SO2 2-Cl 169.8-170.4 485.0857 96.6 10.3 4.8 26 SO2 2-NO2 176.9-177.6 496.1097 98.3 9.4 3.6 27 SO2 3-NO2 221.7-222.8 496.1088 98.5 26.5 4.3 28 SO2 4-NO2 >230 496.1087 98.9 17.7 5.5 29 SO2 2,5-DiCl 95.8-96.0 519.0463 98.5 13.0 3.0 30 SO2 2,5-DiOCH3 182.9-184.3 511.1452 99.9 21.4 5.5 31 SO2 2-CH3-5-NO2 178.1-179.2 510.1241 99.5 24.0 5.1 Table 3 In vitro binding and cAMP assay data. Compound Radioligand binding assay cAMP assay (V2, IC50, nmol/L) V2 (IC50, nmol/L) V1a (IC50, nmol/L) V1a/V2 5 20 440 22 130 8 11 160 15 260 11 35 930 27 93 12 9 540 60 30 15 13 820 63 69 18 16 490 31 180 23 8 380 48 45 27 9 91 10 37 S. Mu et al. / Chinese Chemical Letters 24 (2013) 531-534 533 2.75-2.88 (m, 2H), 3.22-3.42 (m, 4H), 3.62 (br s, 1H), 4.16 (br s, 1H), 7.10-7.24 (m, 8H), 7.43 (d, 1H, J = 7.2 Hz), 8.36 (br s, 1H). 15: 1H NMR (400 MHz, CDCl3):d 2.17-2.66 (m, 4H), 2.75-2.88 (m, 2H), 3.01-3.67 (m, 1H), 3.28-3.44 (m, 4H), 4.14-4.28 (m, 1H), 7.02-7.44 (m, 9H), 8.29-8.41 (m, 1H). 16: 1H NMR (400 MHz, CDCl3): δ 2.28-2.68 (m, 4H), 2.77-2.89 (m, 2H), 3.22-3.42 (m, 4H), 3.59 (br s, 1H), 4.11 (br s, 1H), 7.12-7.26 (m, 4H), 7.27-7.39 (m, 3H), 7.41-7.46 (m, 2H), 8.38 (br s, 1H). 17: 1H NMR (400 MHz, CDCl3): δ 2.24-2.27 (m, 4H), 2.75-2.96 (m, 2H), 3.19 (br s, 1H), 3.31-3.55 (m, 4H), 4.13-4.40 (m, 1H), 7.02-7.24 (m, 6H), 7.32-7.38 (m, 2H), 7.45-7.51 (m, 1H), 8.34-8.48 (m, 1H). 18: 1H NMR (400 MHz, CDCl3): δ 2.28-2.64 (m, 4H), 2.74-2.89 (m, 2H), 3.17-3.28 (m, 1H), 3.30-3.51 (m, 4H), 4.11-4.21 (m, 1H), 7.02-7.17 (m, 7H), 7.42 (dd, 1H, J1 = 9.28.0 Hz, J2 = 9.211.2 Hz), 8.38 (dd, 1H, J1 = 9.24.0 Hz, J2 = 9.230.8 Hz). 19: 1H NMR (400 MHz, CDCl3): δ 2.20-2.49 (m, 4H), 2.52-2.88 (m, 2H), 3.00-3.12 (m, 1H), 3.23-3.46 (m, 4H), 3.756-3.84 (m, 3H), 4.19-4.31 (m, 1H), 6.83-6.98 (m, 2H), 7.03-7.16 (m, 5H), 7.27-7.44 (m, 2H), 8.32-8.42 (m, 1H). 20: 1H NMR (400 MHz, CDCl3): δ 2.02-2.68 (m, 4H), 2.75-2.89 (m, 2H), 3.22-3.43 (m, 4H), 3.60-3.86 (m, 4H), 4.07-4.37 (m, 1H), 6.89-6.94 (m, 3H), 7.12-7.15 (m, 4H), 7.26-7.59 (m, 2H), 8.39 (br s, 1H). 21: 1H NMR (400 MHz, CDCl3): δ 2.18-2.45 (m, 4H), 2.81-2.82 (m, 2H), 3.42-3.44 (m, 5H), 3.96 (br s, 1H), 7.11-7.30 (m, 4H), 7.56-7.87 (m, 3H), 8.21-8.36 (m, 3H). 22: 1H NMR (400 MHz, DMSO-d6): δ 2.18-2.32 (m, 2H), 2.41 (br s, 1H), 2.79-2.84 (m, 2H), 3.17-3.36 (m, 6H), 3.97 (br s, 1H), 7.05-7.32 (m, 4H), 7.54-7.57 (m, 1H), 7.68 (d, 2H, J = 8.4 Hz), 8.25-8.36 (m, 3H). 23: 1H NMR (400 MHz, CDCl3): δ 2.33-2.44 (m, 3H), 2.54-2.60 (m, 4H), 2.63-2.83 (m, 2H), 3.01-3.07 (m, 2H), 3.29-3.48 (m, 4H), 7.05-7.14 (m, 4H), 7.26-7.30 (m, 2H), 7.41-7.45 (m, 2H), 7.86 (t, 1H, J = 4.0 Hz), 8.39 (d, 1H, J = 3.2 Hz). 24: 1H NMR (400 MHz, CDCl3): δ 2.36-2.37 (m, 2H), 2.44-2.63 (m, 5H), 2.70-2.83 (m, 2H), 2.93-3.00 (m, 2H), 3.17-3.32 (m, 4H), 6.99-7.13 (m, 4H), 7.31 (d, 2H, J = 8.0 Hz), 7.38-7.41 (m, 1H), 7.63 (d, 2H, J = 9.6 Hz), 8.35-8.36 (dd, 1H, J1 = 9.21.6 Hz, J2 = 9.24.8 Hz). 25: 1H NMR (400 MHZ, DMSO-d6): δ 2.21-2.43 (m, 4H), 2.75-2.81 (m, 2H), 3.07-3.12 (m, 2H), 3.22-3.44 (m, 4H), 7.06 (d, 1H, J = 8.4 Hz), 7.16-7.19 (m, 2H), 7.28 (s, 1H), 7.53 (t, 2H, J = 6.4 Hz), 7.67 (q, 2H, J = 8.1 Hz), 7.96 (d, 1H, J = 7.6 Hz), 8.31 (d, 1H, J = 4.0 Hz). 26: 1H NMR (400 MHz, CDCl3): δ 2.39-2.43 (m, 2H), 2.46-2.64 (m, 2H), 2.73-2.87 (m, 2H), 3.16-3.39 (m, 4H), 3.50-3.59 (m, 2H), 7.05-7.16 (m, 4H), 7.42 (dd, 1H, J1 = 9.21.6 Hz, J2 = 9.27.6 Hz), 7.59-7.72 (m, 3H), 7.96-7.98 (m, 1H), 8.37 (t, 1H, J = 2.4 Hz). 27: 1H NMR (400 MHz, CDCl3): δ 2.40-2.41 (m, 2H), 2.50-2.57 (m, 1H), 2.62-2.68 (m, 1H), 2.71-2.86 (m, 2H), 3.09-3.15 (m, 2H), 3.22-3.36 (m, 4H), 7.01 (d, 2H, J = 8.0 Hz), 7.11-7.15 (m, 3H), 7.45 (d, 1H, J = 7.6 Hz), 7.76 (t, 1H, J = 8.0 Hz), 8.07-8.10 (m, 1H), 8.37 (d, 1H, J = 6.4 Hz), 8.44-8.59 (m, 1H), 8.59 (d, 1H, J = 2.0 Hz). 28: 1H NMR (400 MHz, CDCl3): δ 2.34-2.39 (m, 2H), 2.46-2.49 (m, 1H), 2.60-2.62 (m, 1H), 2.72-2.81 (m, 2H), 2.99-3.03 (m, 2H), 3.20-3.33 (m, 4H), 6.98 (d, 1H, J = 8.4 Hz), 7.05-7.13 (m, 3H), 7.39 (d, 1H, J = 7.6 Hz), 7.91-7.94 (m, 2H), 8.33-8.37 (m, 3H). 29: 1H NMR (400 MHz, CDCl3): δ 2.33-2.49 (m, 3H), 2.54-2.60 (m, 1H), 2.72-2.86 (m, 2H), 3.14-3.38 (m, 4H), 3.49-3.57 (m, 2H), 7.03-7.15 (m, 4H), 7.40-7.43 (m, 3H), 8.01 (t, 1H, J = 0.6 Hz), 8.36 (d, 1H, J = 4.8 Hz). 30: 1H NMR (400 MHz, CDCl3): δ 2.29-2.57 (m, 4H), 2.71-2.84 (m, 2H), 3.04-3.13 (m, 2H), 3.24-3.37 (m, 2H), 3.44-3.77 (m, 2H), 3.77 (s, 3H), 3.83 (s, 3H), 6.92-7.13 (m, 6H), 7.39-7.41 (m, 2H), 8.36 (dd, 1H, J1 = 9.21.6 Hz, J2 = 9.24.8 Hz). 31: 1H NMR (400 MHz, CDCl3): δ 2.38-2.62 (m, 4H), 2.73-2.88 (m, 5H), 3.12-3.52 (m, 6H), 7.03-7.15 (m, 4H), 7.43-7.51 (m, 2H), 8.25-8.37(m, 2H), 8.70 (d, 1H, J = 2.4 Hz).
-
[1]
-
-
-
[1]
Jian Song , Shenghui Wang , Qiuge Liu , Xiao Wang , Shuo Yuan , Hongmin Liu , Saiyang Zhang . N-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678
-
[2]
Ping Sun , Yuanqin Huang , Shunhong Chen , Xining Ma , Zhaokai Yang , Jian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005
-
[3]
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
-
[4]
Guangyao Wang , Zhitong Xu , Ye Qi , Yueguang Fang , Guiling Ning , Junwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503
-
[5]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[6]
Yadan SUN , Xinfeng LI , Qiang LIU , Oshio Hiroki , Yinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131
-
[7]
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
-
[8]
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
-
[9]
Fangping Yang , Jin Shi , Yuansong Wei , Qing Gao , Jingrui Shen , Lichen Yin , Haoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746
-
[10]
Chong Liu , Ling Li , Jiahui Gao , Yanwei Li , Nazhen Zhang , Jing Zang , Cong Liu , Zhaopei Guo , Yanhui Li , Huayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118
-
[11]
Shuying Li , Weiwei ZhuGe , Xuan Sun , Chongzhen Sun , Zhaojun Liu , Chenghe Xiong , Min Xiao , Guofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089
-
[12]
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
-
[13]
Sifan Du , Yuan Wang , Fulin Wang , Tianyu Wang , Li Zhang , Minghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256
-
[14]
Jun-Ming Cao , Kai-Yang Zhang , Jia-Lin Yang , Zhen-Yi Gu , Xing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304
-
[15]
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
-
[16]
Liping Zhao , Xixi Guo , Zhimeng Zhang , Xi Lu , Qingxuan Zeng , Tianyun Fan , Xintong Zhang , Fenbei Chen , Mengyi Xu , Min Yuan , Zhenjun Li , Jiandong Jiang , Jing Pang , Xuefu You , Yanxiang Wang , Danqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506
-
[17]
Yu Hong , Yuqian Jiang , Chenhuan Yuan , Decai Wang , Yimeng Sun , Jian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909
-
[18]
Zhibin Ren , Shan Li , Xiaoying Liu , Guanghao Lv , Lei Chen , Jingli Wang , Xingyi Li , Jiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629
-
[19]
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
-
[20]
Bairu Meng , Zongji Zhuo , Han Yu , Sining Tao , Zixuan Chen , Erik De Clercq , Christophe Pannecouque , Dongwei Kang , Peng Zhan , Xinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(630)
- HTML views(3)