Citation: Ya-Qing Xu, Shen-Luan Yu, Yan-Yun Li, Zhen-Rong Dong, Jing-Xing Gao. Novel chiral C2-symmetric multidentate aminophosphine ligands for use in catalytic asymmetric reduction of ketones[J]. Chinese Chemical Letters, ;2013, 24(6): 527-530.
-
A series of novel chiral C2-symmetric multidentate aminophosphine ligands have been successfully synthesized by Schiff-base condensation of bis(o-formylphenyl)phenylphosphane and easily available monoprotected (1R,2R)-diaminocyclohexane. The catalytic properties of these ligands were investigated in Ir-catalyzed asymmetric transfer hydrogenation of various aromatic ketones, giving the corresponding optical active alcohols with up to 98% conversion and good ee under mild reaction conditions.
-
-
[1]
[1] T. Hamada, T. Torii, K. Izawa, T. Ikariya, A practical synthesis of optically active aromatic epoxides via asymmetric transfer hydrogenation of α-chlorinated ketones with chiral rhodium-diamine catalyst, Tetrahedron 60 (2004) 7411-7417.
-
[2]
[2] T. Ikariya, A.J. Blacker, Asymmetric transfer hydrogenation of ketones with bifunctional transition metal-based molecular catalysts, Acc. Chem. Res. 40 (2007) 1300-1308.
-
[3]
[3] R.H. Morris, Asymmetric hydrogenation, transfer hydrogenation and hydrosilylation of ketones catalyzed by iron complexes, Chem. Soc. Rev. 38 (2009) 2282-2291.
-
[4]
[4] R. Malacea, R. Poli, E. Manoury, Asymmetric hydrosilylation, transfer hydrogenation and hydrogenation of ketones catalyzed by iridium complexes, Coord. Chem. Rev. 254 (2010) 729-752.
-
[5]
[5] R. Noyori, S. Hashiguchi, Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes, Acc. Chem. Res. 30 (1997) 97-102.
-
[6]
[6] J.X. Gao, T. Ikariya, R. Noyori, A ruthenium(Ⅱ) complex with a C2-symmetric diphosphine/diamine tetradentate ligand for asymmetric transfer hydrogenation of aromatic ketones, Organometallics 15 (1996) 1087-1089.
-
[7]
[7] C. Wang, X.F. Wu, J.L. Xiao, Broader, greener, and more efficient: recent advances in asymmetric transfer hydrogenation, Chem. Asian J. 3 (2008) 1750-1770.
-
[8]
[8] V.A. Pavlov, C2 and C1 symmetry of chiral auxiliaries in catalytic reactions on metal complexes, Tetrahedron 64 (2008) 1147-1179.
-
[9]
[9] J. Vá clavík, P. Kačer, M. Kuzma, L. Č ervenŷ, Opportunities offered by chiral η6-aren;e/N-arylsulfonyldiamine-RuⅡ catalysts in the asymmetric transfer hydrogenation of ketones and imines, Molecules 16 (2011) 5460-5495.
-
[10]
[10] S.L. Yu, Y.Y. Li, Z.R. Dong, et al., Synthesis of novel chiral N, P-containing multidentate ligands and their applications in asymmetric transfer hydrogenation, Chin. Chem. Lett. 22 (2011) 1269-1272.
-
[11]
[11] Z.R. Dong, Y.Y. Li, S.L. Yu, G.S. Sun, J.X. Gao, Asymmetric transfer hydrogenation of ketones catalyzed by nickel complex with new PNO-type ligands, Chin. Chem. Lett. 23 (2012) 533-536.
-
[12]
[12] S.L. Yu, W.Y. Shen, Y.Y. Li, et al., Iron-catalyzed highly enantioselective reduction of aromatic ketones with chiral P2N4-type macrocycles, Adv. Synth. Catal. 354 (2012) 818-822.
-
[13]
[13] C. Rancurel, N. Daro, O.B. Borobia, E. Herdtweck, J.P. Sutter, H2O as a chemical link for ferromagnetic interactions between aminoxyl units, Eur. J. Org. Chem. (2003) 167-171.
-
[14]
[14] P. Lagriffoule, P. Wittung, M. Eriksson, et al., Peptide nucleic acids with a conformationally constrained chiral cyclohexyl-derived backbone, Chem. Eur. J. 3 (1997) 912-919.
-
[15]
[15] Compound 2: [α]D20 +32.8 (c 0.4, CH2Cl2); 1H NMR (500 MHz, CDCl3): δ 4.65 (d, 1H, J = 8.0 Hz, NH carbamate), 3.28-3.05 (m, 1H, CHN), 2.36 (dt, 1H, J = 10.0 Hz and 3.5 Hz, CHN), 2.05-1.95 (m, 2H, CH2, cycl), 1.78-1.65 (m, 4H, CH2, cycl and NH2), 1.45 (s, 9H, tBoc), 1.38-1.05 (m, 4H, 2CH2, cycl). Compound 3: mp 114-116 ℃; [α]D20 +53.5 (c 0.2, CH2Cl2); 1H NMR (500 MHz, CDCl3): δ 8.79 (s, 1H), 8.76 (s, 1H), 8.02 (s, 1H), 7.94 (s, 1H), 7.68-7.56 (m, 1H), 7.40-7.18 (m, 10H), 6.90-6.77 (m, 2H), 3.58-3.42 (m, 2H), 2.94-2.77 (m, 2H), 2.23-2.08 (m, 2H), 2.08-1.95 (m, 2H), 1.75-1.62 (m, 4H), 1.50-1.42 (m, 4H), 1.34 (s, 18H), 1.25-1.16 (m, 4H); 13C NMR (125 MHz, CDCl3): δ 159.0, 158.8, 155.3, 139.8 (d, J = 18.8 Hz), 139.3 (d, J = 17.5 Hz), 136.4 (d, J = 16.3 Hz), 136.2, 134.4, 134.2, 133.7, 133.4, 130.3, 130.2, 129.1, 128.9, 128.7, 128.6, 128.2, 78.8, 73.9, 54.3, 33.2, 33.0, 31.8, 28.4, 24.9, 24.8, 24.0
-
[16]
(d); 31P NMR ((202 MHz, CDCl3): δ 20.55; HRMS (ESI, m/z) Calcd. for C42H56N4O4P [M+H]+: 711.4034, found: 711.4034. Compound 4: mp 134-136 ℃; [α]D20 7.0 (c 0.2, CH2Cl2); 1H NMR (500 MHz, CDCl3): δ 7.62-7.45 (m, 2H), 7.43-7.30 (m, 5H), 7.29-7.20 (m, 2H), 7.20-7.18 (m, 2H), 6.87-6.72 (m, 2H), 5.05-4.42 (br m, 2H), 4.08-3.82 (m, 4H), 3.35-3.11 (m, 2H), 2.26-2.14 (m, 2 H), 2.10-2.00 (m, 2H), 1.98-1.85 (m, 4H), 1.69-1.56 (m, 4H), 1.44 (s, 18 H), 1.30-1.21 (m, 2 H), 1.13-0.98 (m, 6 H); 13C NMR (125 MHz, CDCl3): δ 156.1, 145.0, 135.0, 134.3, 134.1, 133.6, 133.4, 129.1, 129.0, 128.9, 128.7, 128.6, 127.2, 60.6, 60.4, 54.6, 49.3, 49.2, 49.1, 49.0, 32.7, 32.6, 31.6, 28.4, 24.7, 24.5; 31P NMR ((202 MHz, CDCl3): δ 25.35; HRMS (ESI, m/z) Calcd. for C42H60N4O4P [M+H]+: 715.4347, found: 715.4345. Compound 5: mp 60-62 ℃; [α]D20 37.0 (c 0.2, CH2Cl2); 1H NMR (400 MHz, CDCl3): δ 7.58-7.36 (m, 3H), 7.35-7.28 (m, 4H), 7.26-7.13 (m, 4H), 6.92-6.75 (m, 2H), 4.12-3.73 (m, 4H), 3.25 (br s, 6H), 2.46-2.28 (m, 2H), 2.28-2.00 (m, 4H), 1.98-1.84 (m, 2H), 1.75-1.60 (m, 4H), 1.28-1.12 (m, 6H), 1.03-0.82 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 144.5 (d, J = 32 Hz), 144.2 (d, J = 31 Hz), 136.4 (d, J = 7 Hz), 135.6 (d, J = 12 Hz), 135.4 (d, J = 11 Hz), 134.4, 134.2, 134.0, 133.8, 129.8 (d, J = 5 Hz), 129.3, 128.9, 128.7 (d, J = 7 Hz), 127.7 (d, J = 12 Hz), 61.9 (d, J = 17 Hz), 55.1 (d, J = 17 Hz), 50.0, 49.8, 49.4, 49.3, 33.8, 33.4, 31.2, 31.1, 25.1
-
[17]
(d), 24.8
-
[18]
(d). 31P NMR ((162 MHz, CDCl3): δ 24.80; HRMS (ESI, m/z) Calcd. for C32H44N4P [M+H]+: 515.3298, found: 515.3303.
-
[1]
-
-
[1]
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
-
[2]
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
-
[3]
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
-
[4]
Xingfen Huang , Jiefeng Zhu , Chuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783
-
[5]
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
-
[6]
Ming Huang , Xiuju Cai , Yan Liu , Zhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323
-
[7]
Long Jin , Jian Han , Dongmei Fang , Min Wang , Jian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212
-
[8]
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
-
[9]
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
-
[10]
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
-
[11]
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
-
[12]
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
-
[13]
Yu-Hang Miao , Zheng-Xu Zhang , Xu-Yi Huang , Yuan-Zhao Hua , Shi-Kun Jia , Xiao Xiao , Min-Can Wang , Li-Ping Xu , Guang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830
-
[14]
Chao Chen , Wenwen Yu , Guangen Huang , Xuelian Ren , Xiangli Chen , Yixin Li , Shenggui Liang , Mengmeng Xu , Mingyue Zheng , Yaxi Yang , He Huang , Wei Tang , Bing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574
-
[15]
Xiang Huang , Dongzhen Xu , Yang Liu , Xia Huang , Yangfan Wu , Dongmei Fang , Bing Xia , Wei Jiao , Jian Liao , Min Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665
-
[16]
Jinyu Guo , Yandai Lin , Shaohua He , Yueqing Chen , Fenglu Li , Renjie Ruan , Gaoxing Pan , Hexin Nan , Jibin Song , Jin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537
-
[17]
Chun-Yun Ding , Ru-Yuan Zhang , Yu-Wu Zhong , Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393
-
[18]
Fuzheng Zhang , Chao Shi , Jiale Li , Fulin Jia , Xinyu Liu , Feiyang Li , Xinyu Bai , Qiuxia Li , Aihua Yuan , Guohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596
-
[19]
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
-
[20]
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(646)
- HTML views(6)