Citation: Wen-Jing Liu, De-Sheng Mei, Wen-Hu Duan. Synthesis of 1,7-dimethoxy-2-hydroxyxanthone, a natural product with potential activity on erectile dysfunction[J]. Chinese Chemical Letters, ;2013, 24(6): 515-517. shu

Synthesis of 1,7-dimethoxy-2-hydroxyxanthone, a natural product with potential activity on erectile dysfunction

  • Corresponding author: De-Sheng Mei,  Wen-Hu Duan, 
  • Received Date: 6 January 2013
    Available Online: 7 March 2013

  • The natural product, 1,7-dimethoxy-2-hydroxyxanthone (1), isolated from Securidaca inappendiculate Hassk, has a potential in the treatment of erectile dysfunction due to its significant relaxation activity on rabbit Corpus cavernosum. However, the isolation of compound 1 is problematic because of its high similarity in structure to its analogs. In this paper, the first synthesis of 1 was reported featuring two key reactions: a copper-catalyzed coupling reaction and an intramolecular cyclization.
  • 加载中
    1. [1]

      [1] X.D. Yang, L.Z. Xu, S.L. Yang, Xanthones from the stems of Securidaca inappendiculata, Phytochemistry 127 (2001) 1245-1249.

    2. [2]

      [2] T. Bo, X.D. Yang, K.A. Li, Optimized separation of pharmacologically active xanthones from Securidaca inappendiculata by capillary electrophoresis, Chromatographia 55 (2001) 217-223.

    3. [3]

      [3] C. Galeffi, E. Federici, J.D. Msonthi, Research on African medicinal plants part XVⅢ new xanthones from Ectiadiopsis oblongifolia and Securidaca longepedunculata, Fitoterapia 61 (1990) 79-81.

    4. [4]

      [4] (a) C.N. Lin, M.L. Chung, S.J. Liou, Synthesis and anti-inflammatory effects of xanthone derivatives, J. Pharm. Pharmacol. 48 (1996) 532-538 (for isolated compounds from Securidaca inappendiculata Hassk);

    5. [5]

      (b) A. Bashir, M. Hamburger, J.D. Msonthi, et al., Isoflavones and xanthones from Polygala virgata, Phytochemistry 31 (1992) 309-311;

    6. [6]

      (c) E.R. Silveira, M.J.C. Falcao, A. Menezes Jr., Pentaoxygenated xanthones from Bredemeyera floribunda, Phytochemistry 39 (1995) 1433-1436.

    7. [7]

      [5] N.C. Rakuambo, J.J.M. Meyer, A. Hussein, Xanthone isolated from Securidaca longependunculata with activity against erectile dysfunction, Fitoterapia 75 (2004) 497-499.

    8. [8]

      [6] T. Makela, J. Matikainen, K. Wahala, Development of novel hapten for radioimmunoassay of the lignan, enterolactone in plasma (Serum) total synthesis of (±)-trans-5-carboxymethoxyenterolactone and several analogues, Tetrahedron 56 (2000) 1873-1882.

    9. [9]

      [7] B. Chen, U. Baumeister, C. Tschierske, Carbohydrate-rod-conjugates-ternary rodcoil molecules forming complex liquid crystal structures, J. Am. Chem. Soc. 127 (2005) 16578-16591.

    10. [10]

      [8] (a) S.V. Kessar, Y.P. Gupta, P. Balakrishnan, Benzyne cyclization route to benzo[c]phenanthridine alkaloids. Synthesis of chelerythrine, decarine, and nitidine, J. Org. Chem. 53 (1988) 1708-1713 (for the bromation);

    11. [11]

      (b) Y.B. Hu, C.M. Li., J.A. Porco Jr., Exploring chemical diversity of epoxyquinoid natural products: synthesis and biological activity of (-)-jesterone and related molecules, Org. Lett. 3 (2001) 1649-1652;

    12. [12]

      (c) T. Nakanishi, M. Suzuki, Revision of the structure of fagaridine based on the comparison of UV and NMR data of synthetic compounds, J. Nat. Prod. 61 (1998) 1263-1267;

    13. [13]

      (d) U. Wriede, M. Fernandez, H.W. Moore, Synthesis of halodimethoxy-1,2-benzoquinones, J. Org. Chem. 52 (1987) 4485-4489.

    14. [14]

      [9] D.L.J. Clive, M. Sannigrahi, S. Hisaindee, Synthesis of (±)-puraquinonic acid: an inducer of cell differentiation, J. Org. Chem. 66 (2001) 954-961.

    15. [15]

      [10] D.L.J. Clive, M.L. Yu, M. Sannigrahi, Synthesis of optically pure (+)-puraquinonic acid and assignment of absolute configuration to natural (±)-puraquinonic acid. Use of radical cyclization for asymmetric generation of a quaternary center, J. Org. Chem. 69 (2004) 4116-4125.

    16. [16]

      [11] (a) E. Dalcanale, Selective oxidation of aldehydes to carboxylic acids with sodium chlorite-hydrogen peroxide, J. Org. Chem. 51 (1986) 567-569;

    17. [17]

      (b) Spectral data of 9-1: Mp 162-163 ℃. 1H NMR (400 MHz, CDCl3): δ 7.46-7.36 (m, 5H), 7.26 (d, 1H, J = 8.8 Hz), 6.92 (d, 1H, J = 8.8 Hz), 5.15 (s, 2H), 3.98 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 167.9, 151.1, 146.6, 136.5, 132.5, 128.3, 127.8, 127.7, 127.3, 115.9, 107.8, 70.6, 60.7; HRMS (EI, m/z): Calcd. for C15H13O4Br (M+): 337.9987, found: 337.9977.

    18. [18]

      [12] Spectral data of 7-1: 1H NMR (400 MHz, CDCl3): δ 7.47-7.33 (m, 5H), 6.98 (d, 2H, J = 9.2 Hz), 6.93 (d, 1H, J = 8.8 Hz), 6.86 (d, 2H, J = 8.8 Hz), 6.53 (d, 1H, J = 9.2 Hz), 5.10 (s, 2H), 4.01 (s, 3H), 3.80 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 155.9, 150.6, 149.6, 148.0, 147.2, 136.7, 128.6, 128.1, 127.4, 120.5, 117.3, 114.7, 113.2, 71.8, 61.9, 55.6; HRMS (EI, m/z): Calcd. for C22H20O6 (M+): 380.1262, found: 380.1260.

    19. [19]

      [13] Spectral data of 7-dimethoxy-2-hydroxyxanthone (1): Mp 174-176 8C (lit. [3] mp 174-176 8C); 1H NMR (400 Hz, CDCl3): δ 7.70 (d, 1H, J = 3.2 Hz), 7.41 (dd, 2H, J1 = 9.29.2 Hz, J2 = 9.23.6 Hz), 7.33 (dd, 1H, J1 = 9.29.0 Hz, J2 = 9.23.2 Hz), 7.25 (d, 1H, J = 8.8 Hz), 5.98 (s, 1H), 4.07 (s, 3H), 3.93 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 176.2, 155.9, 151.0, 150.3, 145.1, 144.1, 124.9, 122.3, 122.2, 119.0, 115.5, 114.2, 105.5, 62.6, 55.9; HRMS (EI, m/z): Calcd. for C15H12O5 (M+): 272.0686, found: 272.0685.

    20. [20]

      [14] (a) J. Wrobel, J. Millen, J. Sredy, Syntheses of tolrestat analogs containing additional substituents in the ring and their evaluation as aldose reductase inhibitors. Identification of potent, orally active 2-fluoro derivatives, J. Med. Chem. 34 (1991) 2504-2520 (for Ullmann reaction);

    21. [21]

      (b) J.R. Goodell, A.A. Madhok, D.M. Ferguson, Synthesis and evaluation of acridine- and acridone-based anti-herpes agents with topoisomerase activity, Bioorg. Med. Chem. 14 (2006) 5467-5480;

    22. [22]

      (c) L. Piazzi, A. Cavali, F. Belluti, Extensive, SAR and computational studies of 3-{4-[(benzylmethylamino)methyl]phenyl}-6,7-dimethoxy-2H-2-chromenone(AP2238) derivatives, J. Med. Chem. 50 (2007) 4250-4254.

    23. [23]

      [15] (a) N.N. Kulkarni, V.S. Kulkarni, B.D. Hosangadi, Synthetic studies on medium and large ring esters, Tetrahedron 44 (1988) 5145-5149 (for intramolecular cyclization);

    24. [24]

      (b) R.H.B. Galt, J. Horury, S. Zbigniew, The xanthene-9-spiro-4'-piperidine nucleus as a probe for opiate activity, J. Med. Chem. 32 (1989) 2357-2362;

    25. [25]

      (c) J.S. Sawyer, E.A. Schmittling, J.A. Palkowitz, Synthesis of diaryl ethers, diaryl thioethers, and diarylamines mediated by potassium fluoride-alumina and 18-crown-6: expansion of scope and utility(1), J. Org. Chem. 63 (1998) 6338-6343.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    5. [5]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    6. [6]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    7. [7]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    8. [8]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    9. [9]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    10. [10]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    11. [11]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    12. [12]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    13. [13]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    14. [14]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    15. [15]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    16. [16]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    17. [17]

      Hongjin ShiGuoyin YinXi LuYangyang Li . Stereoselective synthesis of 2-deoxy-α-C-glycosides from glycals. Chinese Chemical Letters, 2024, 35(12): 109674-. doi: 10.1016/j.cclet.2024.109674

    18. [18]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    19. [19]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    20. [20]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

Metrics
  • PDF Downloads(0)
  • Abstract views(660)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return