Citation: Bagher Mohammadi, Mansoor Shafieey, Hamed Kazemi, Ali Ramazani. Pseudo four-component and regioselective synthesis of 4-amino-3, 5-dicyano-6-arylphthalates using triethylamine catalyst[J]. Chinese Chemical Letters, ;2013, 24(6): 497-499. shu

Pseudo four-component and regioselective synthesis of 4-amino-3, 5-dicyano-6-arylphthalates using triethylamine catalyst

  • Corresponding author: Bagher Mohammadi, 
  • Received Date: 5 February 2013
    Available Online: 11 March 2013

  • An efficient triethylamine-catalyzed synthesis of 4-amino-3,5-dicyano-6-arylphthalates is described. A one-pot, simple pseudo four-component reaction between arylaldehydes, dialkyl acetylenedicarboxylates, and twice as muchmalononitrile gave 4-amino-3,5-dicyano-6-arylphthalates in good to excellent yields.
  • 加载中
    1. [1]

      [1] (a) D.R. Kanis, M.A. Ratner, T.J. Marks, Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects, Chem. Rev. 94 (1994) 195-242;

    2. [2]

      (b) N.J. Long, Organometallic compounds for nonlinear optics -the search for enlight-enment, Angew. Chem. Int. Ed. Engl. 34 (1995) 21-38.

    3. [3]

      [2] (a) R.L. Carroll, C.B. Gorman, The genesis of molecular electronics, Angew. Chem. Int. Ed. Engl. 41 (2002) 4378-4400;

    4. [4]

      (b) M. Bendikov, F. Wudl, D.F. Perepichka, Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: the brick and mortar of organic electronics, Chem. Rev. 104 (2004) 4891-4945.

    5. [5]

      [3] S.L. Cui, X.F. Lin, W.Y. Gang, Parallel synthesis of strongly fluorescent polysubstituted 2,6-dicyanoanilines via microwave-promoted multicomponent reaction, J. Org. Chem. 70 (2005) 2866-2869.

    6. [6]

      [4] F.V. Singh, R. Vatsyayan, U. Roy, A. Goel, Arylanthranilodinitriles: a new biaryl class of antileishmanial agents, Bioorg. Med. Chem. Lett. 16 (2006) 2734-2737.

    7. [7]

      [5] (a) J. Sepiol, P. Milart, Elimination of the nitrile group from o-aminonitriles-IV: a new and efficient synthesis of 3,5-diarylaminobenzenes from arylidenemalonodinitriles and 1-arylethylidenemalonodinitriles, Tetrahedron 41 (1985) 5261-5265;

    8. [8]

      (b) P. Milart, J. Sepiol, New synthesis of substituted biphenyls, biaryls, and terphenyls from arylidenemalonodinitriles, ethyl pyruvate, and malonodinitrile, Tetrahedron Lett. 31 (1990) 2735-2738;

    9. [9]

      (c) P. Victory, J. Borrell, A. VidalFerran, The reaction of malononitrile with chalcone: a controversial chemical process, Tetrahedron Lett. 32 (1991) 5375-5378;

    10. [10]

      (d) P. Milart, J. Wilamowski, J.J. Sepiol, Synthesis of di- and triamino-1,10:30, 100-terphenyls from arylethylidene- and arylidenemalonodinitriles, Tetrahedron 54 (1998) 15643-15656;

    11. [11]

      (e) A. Goel, F.V. Singh, Regioselective synthesis of functionally congested biaryls through a novel C-C bond formation reaction, Tetrahedron Lett. 46 (2005) 5585-5587;

    12. [12]

      (f) M. Adib, B. Mohammadi, M. Mahdavi, A. Abbasi, M.R. Kesheh, 1-Methylimidazole-catalyzed regioselective synthesis of highly substituted benzenes, Synlett (2007) 2497-2500;

    13. [13]

      (g) L.C. Rong, H.X. Han, F. Yang, et al., Efficient one-pot synthesis of 2-amino-4,6-diarylbenzene-1,3-dicarbonitrile under solvent-free conditions, Synth. Commun. 37 (2007) 3767-3772.

    14. [14]

      [6] M. Adib, B. Mohammadi, S. Ansari, H.R. Bijanzadeh, L.G. Zhuc, A novel synthesis of 3-aryl-2,6-dicyano-5-methylanilines via reaction between nitrostyrenes and malononitrile, Synthesis (2010) 1526-1530.

    15. [15]

      [7] P.S. Sangmeshwer, S.K. Ananada, V.D. Jaydeep, et al., One-step synthesis of 4-alkyl-3-aryl-2,6-dicyanoanilines and their use in the synthesis of highly functionalized 2,3,5,6,7- and 2,3,4,5,7-substituted indoles, Tetrahedron Lett. 52 (2011) 5491-5493.

    16. [16]

      [8] (a) X.S. Wang, M.M. Zhang, Q. Li, C.S. Yao, S.J. Tu, An improved and clean procedure for the synthesis of one-donor poly-acceptors systems containing 2,6-dicyanoamine moiety in aqueous media catalyzed by TEBAC in the presence and absence of K2CO3, Tetrahedron 63 (2007) 5265-5273;

    17. [17]

      (b) J. Griffiths, M. Lockwood, B. Roozpeikar, Orientation effects in the benzene chromophore bearing one donor and two acceptor groups. Electronic absorption spectra of the dicyanoanilines, J. Chem. Soc., Perkin Trans. 2 (1977) 1608-1610.

    18. [18]

      [9] D. Xue, J. Li, Z.T. Zhang, J.G. Deng, Efficient method for the synthesis of polysubstituted benzenes by one-pot tandem reaction of vinyl malononitriles with nitroolefins, J. Org. Chem. 72 (2007) 5443-5445.

    19. [19]

      [10] C. Yi, C. Blum, S.X. Liu, et al., An efficient and facile synthesis of highly substituted 2,6-dicyanoanilines, J. Org. Chem. 73 (2008) 3596-3599.

    20. [20]

      [11] I.S. Khaidem, S.L. Singh, L.R. Singh, M.Z.R. Khan, Synthesis of substituted benzenes from a-methylene ketones, Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 35 (1996) 911-914.

    21. [21]

      [12] F.V. Singh, V. Kumar, B. Kumar, A. Goel, Regioselective synthesis of 2-aminoisophthalonitriles through a ring transformation strategy, Tetrahedron 63 (2007) 10971-10978.

    22. [22]

      [13] L.C. Rong, H.X. Han, H. Jiang, D.Q. Shi, S.J. Tu, Solvent-free synthesis of 3-amino-2,4-dicarbonitrile-5-methylbiphenyl by a grinding method, Synth. Commun. 38 (2008) 1044-1055.

    23. [23]

      [14] (a) M. Adib, B. Mohammadi, H.R. Bijanzadeh, A novel one-pot, three-component synthesis of dialkyl 5-(alkylamino)-1-aryl-1H-pyrazole-3,4-dicarboxylates, Synlett (2008) 3180-3182;

    24. [24]

      (b) M. Adib, B. Mohammadi, H.R. Bijanzadeh, A novel one-pot, three-component synthesis of dialkyl 5-(alkylamino)-1-aryl-1H-pyrazole-3,4-dicarboxylates, Synlett (2008) 177-180.

  • 加载中
    1. [1]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    2. [2]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    3. [3]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    4. [4]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    5. [5]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    6. [6]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    7. [7]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    8. [8]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    9. [9]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    10. [10]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    13. [13]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    14. [14]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    15. [15]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    16. [16]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    17. [17]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    18. [18]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    19. [19]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    20. [20]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

Metrics
  • PDF Downloads(0)
  • Abstract views(657)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return