Citation: Lei Nie, Guo-Bin Xu, Xiao-Yan Wang, Yun Liu, Peng-Yuan Yang. Coupling microchip electrophoresis with MALDI-TOF-MS based on a freezing technique[J]. Chinese Chemical Letters, ;2013, 24(6): 491-493.
-
A freezing technique protocol was proposed for coupling microchip electrophoresis withmatrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The microfluidic flow was frozen immediately after electrophoresis on microfluidic chip and the separated analyte molecules were kept in their zone pattern in the electrophoresis. Then, the frozen-chip was lyophilized and sent into TOF-MS instrument as a MALDI target, and the analyte molecules in the microfluidic channels were subjected to analysis by mass spectrometry. This approach could eliminate sample cross-contamination, providing a new interface for microchip electrophoresis and MALDI-MS.
-
-
[1]
[1] S.C. Jacobson, J.M. Ramsey, J.P. Landers (Eds.), Handbook of Capillary Electrophoresis, CRC Press, Boca Raton, FL, 1997, p. 827.
-
[2]
[2] C.S. Effenhauser, A. Manz, H. Becker (Eds.), Microsystem Technology in Chemistry and Life Science, Springer, Berlin, 1998, p. 51.
-
[3]
[3] S.S. Park, S.I. Cho, M.S. Kim, Integration of on-column immobilized enzyme reactor in microchip electrophoresis, Electrophoresis 24 (2003) 200-206.
-
[4]
[4] H. Nagata, M. Tabuchi, K. Hirano, High-speed separation of proteins by microchip electrophoresisusingapolyethyleneglycol-coatedplasticchipwithasodiumdodecyl sulfate-linear polyacrylamide solution, Electrophoresis 26 (2005) 2687-2691.
-
[5]
[5] S. Mouradian, Lab on a chip: application in proteomics, Curr. Opin. Chem. Biol. 6 (2002) 51-56.
-
[6]
[6] P. Giron, L. Dayon, J.C. Sanchez, Cysteine tagging for MS-based proteomics, Mass Spectrom. Rev. 30 (2011) 366-395.
-
[7]
[7] N. Liu, L.C. Zhao, C.Y. He, Advances in technologies and biological applications of O-18 labeling strategies in LC-MS based proteomics: an updated review, Curr. Anal. Chem. 8 (2012) 22-34.
-
[8]
[8] R. Aebersold, M. Mann, Mass spectrometry-based proteomics, Nature 422 (2003) 198-207.
-
[9]
[9] X.L. Mao, I.K. Chu, B.C. Lin, A sheath-flow nanoelectrospray interface of microchip electrophoresis MS for glycoprotein and glycopeptide analysis, Electrophoresis 27 (2006) 5059-5067.
-
[10]
[10] W.C. Sung, H. Makamba, S.H. Chen, Chip-based microfluidic devices coupled with electrospray ionization-mass spectrometry, Electrophoresis 26 (2005) 1783-1791.
-
[11]
[11] Z.J. Meng, S.Z. Qi, S.A. Soper, Interfacing a polymer-based micromachined device to a nano-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer, Anal. Chem. 73 (2001) 1286-1291.
-
[12]
[12] S. Ssenyange, J. Taylor, D.J. Harrison, A glassy carbon microfluidic device for electrospray mass spectrometry, Anal. Chem. 76 (2004) 2393-2397.
-
[13]
[13] M. Schilling, W. Nigge, A. Rudzinski, A new on-chip ESI nozzle for coupling of MS with microfluidic devices, Lab Chip 4 (2004) 220-224.
-
[14]
[14] S. Arscott, S. Le Gac, C. Druon, A planar on-chip micro-nib interface for nano ESIMS microfluidic applications, J. Micromech. Microeng. 14 (2004) 310-316.
-
[15]
[15] H.K. Musyimi, J. Guy, D.A. Narcisse, Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet, Electrophoresis 26 (2005) 4703-4710.
-
[16]
[16] D.L. DeVoe, C.S. Lee, Microfluidic technologies for MALDI-MS in proteomics, Electrophoresis 27 (2006) 3559-3568.
-
[17]
[17] K.K. Murray, Coupling matrix-assisted laser desorption/ionization to liquid separations, Mass Spectrom. Rev. 16 (1997) 283-299.
-
[1]
-
-
[1]
Wantong Zhang , Zixing Xu , Guofei Dai , Zhijian Li , Chunhui Deng . Removal of Microcystin-LR in lake water sample by hydrophilic mesoporous silica composites under high-throughput MALDI-TOF MS detection platform. Chinese Chemical Letters, 2024, 35(5): 109135-. doi: 10.1016/j.cclet.2023.109135
-
[2]
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
-
[3]
Wangyan Hu , Ke Li , Xiangnan Dou , Ning Li , Xiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806
-
[4]
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
-
[5]
Zian Lin , Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066
-
[6]
Weiyu Chen , Zenghui Li , Chenguang Zhao , Lisha Zha , Junfeng Shi , Dan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628
-
[7]
Xiaofang Luo , Ye Wu , Xiaokun Zhang , Min Tang , Feiye Ju , Zuodong Qin , Gregory J Duns , Wei-Dong Zhang , Jiang-Jiang Qin , Xin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724
-
[8]
Neng Shi , Haonan Jia , Jixiang Zhang , Pengyu Lu , Chenglong Cai , Yixin Zhang , Liqiang Zhang , Nongyue He , Weiran Zhu , Yan Cai , Zhangqi Feng , Ting Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302
-
[9]
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
-
[10]
Rui Wang , He Qi , Haijiao Zheng , Qiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215
-
[11]
Cheng-Yan Wu , Yi-Nan Gao , Zi-Han Zhang , Rui Liu , Quan Tang , Zhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649
-
[12]
Jianhui Yin , Wenjing Huang , Changyong Guo , Chao Liu , Fei Gao , Honggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244
-
[13]
Chuanfeng Fan , Jian Gao , Yingkai Gao , Xintong Yang , Gaoning Li , Xiaochun Wang , Fei Li , Jin Zhou , Haifeng Yu , Yi Huang , Jin Chen , Yingying Shan , Li Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838
-
[14]
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
-
[15]
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
-
[16]
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
-
[17]
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
-
[18]
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
-
[19]
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309
-
[20]
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(781)
- HTML views(27)