Citation: Ying Han, Yi Jiang, Chuan-Feng Chen. Solid state self-assembly of triptycene-based catechol derivatives by multiple O-H…O hydrogen bonds[J]. Chinese Chemical Letters, ;2013, 24(6): 475-478. shu

Solid state self-assembly of triptycene-based catechol derivatives by multiple O-H…O hydrogen bonds

  • Corresponding author: Chuan-Feng Chen, 
  • Received Date: 27 February 2013
    Available Online: 26 March 2013

  • Single crystals of two triptycene-based catechol derivatives 1 and 2 were obtained, and their X-ray crystal structural studies showed that the two tecton molecules had different conformations in the solid state, and they could self-assemble into interesting 3D networks with solventmolecules included inside, in which multiple O-H...O hydrogen bonds played important roles.
  • 加载中
    1. [1]

      [1] (a) G.R. Desiraju, Supramolecular synthons in crystal engineering -a new organic synthesis, Angew. Chem. Int. Ed. 34 (1995) 2311-2327;

    2. [2]

      (b) J. Maddox, Crystals from first principles, Nature 335 (201) (1988);

    3. [3]

      (c) G.R. Desiraju, Cryptic crystallography, Nat. Mater. 1 (2002) 77-79;

    4. [4]

      (d) J.D. Dunitz, Are crystal structures predictable, Chem. Commun. (2003) 545-548.

    5. [5]

      [2] (a) G.R. Desiraju, Crystal Engineering: The Design of Organic Solids, Elsevier, Amsterdam, 1989;

    6. [6]

      (b) D. Braga, F. Grepioni, A.G. Orpen, Crystal Engineering: From Molecules and Crystals to Materials, Kluwer, Dordrecht, Netherlands, 1999;

    7. [7]

      (c) M.D. Hollingsworth, Crystal engineering: from structure to function, Science 295 (2002) 2410-2413;

    8. [8]

      (d) K. Biradha, Crystal engineering: from weak hydrogen bonds to co-ordination bonds, CrystEngComm 5 (2003) 374-384;

    9. [9]

      (e) G.R. Desiraju, Crystal engineering: a holistic view, Angew. Chem. Int. Ed. 46 (2007) 8342-8356.

    10. [10]

      [3] (a) N. Malek, T. Maris, M.E. Perron, J.D. Wuest, Molecular tectonics: porous cleavable networks constructed by dipole-directed stacking of hydrogen-bonded sheets, Angew. Chem. Int. Ed. 44 (2005) 4021-4025;

    11. [11]

      (b) N. Malek, T. Maris, M. Simard, J.D. Wuest, Molecular tectonics. Selective exchange of cations in porous anionic hydrogen-bonded networks built from derivatives of tetraphenylborate, J. Am. Chem. Soc. 127 (2005) 5910-5916;

    12. [12]

      (c) M.W. Hosseini, Molecular tectonics: from simple tectons to complex molecular networks, Acc. Chem. Res. 38 (2005) 313-323.

    13. [13]

      [4] (a) J.L. Atwood, L.R. MacGillivray, A chiral spherical molecular assembly held together by 60 hydrogen bonds, Nature 389 (469) (1997);

    14. [14]

      (b) W.Z. Xu, J. Sun, Z.T. Huang, Q.Y. Zheng, Molecular encapsulation of a discrete (H2O)32 cluster with S6 symmetry in an organic crystalline supermolecule, Chem. Commun. (2009) 171-173;

    15. [15]

      (c) M.J. Lin, A. Jouaiti, D. Pocic, et al., Molecular tectonics: tubular crystals with controllable channel size and orientation, Chem. Commun. 46 (2010) 112-114.

    16. [16]

      [5] (a) S. Aitipamula, P.K. Thallapally, R. Thaimattam, M. Jasko´ lski, G.R. Desiraju, Topological equivalences between organic and coordination polymer crystal structures: an organic ladder formed with three-connected molecular and supramolecular synthons, Org. Lett. 4 (2002) 921-924;

    17. [17]

      (b) O. Saied, T. Maris, X. Wang, M. Simard, J.D. Wuest, Submaximal interpenetration and bicontinuous three-dimensional channels in porous molecular networks, J. Am. Chem. Soc. 127 (2005) 10008-10009;

    18. [18]

      (c) R.J. Sarma, J.B. Baruah, Supramolecular and host-guest chemistry of bisphenol and analogues, Cryst. Growth Des. 7 (2007) 989-1000.

    19. [19]

      [6] (a) B.F. Abrahams, D.J. Price, R. Robson, Tetraanionic organoborate squares glued together by cations to generate nanotubular stacks, Angew. Chem. Int. Ed. 45 (2006) 806-810;

    20. [20]

      (b) B.F. Abrahams, N.J. FitzGerald, T.A. Hudson, R. Robson, T. Waters, Closed and open clamlike structures formed by hydrogen-bonded pairs of cyclotricatechylene anions that contain cationic "meat", Angew. Chem. Int. Ed. 48 (2009) 3129-3132.

    21. [21]

      [7] (a) T.M. Long, T.M. Swager, Using "internal free volume" to increase chromophore alignment, J. Am. Chem. Soc. 124 (2002) 3826-3827;

    22. [22]

      (b) T.R. Kelly, R.A. Silva, H.D. Silva, S. Jasmin, Y. Zhao, A rationally designed prototype of a molecular motor, J. Am. Chem. Soc. 122 (2000) 6935-6949;

    23. [23]

      (c) E. Marc Veen, P.M. Postma, H.T. Jonkman, A.L. Spek, B.L. Feringa, Solid state organisation of C60 by inclusion crystallisation with triptycenes, Chem. Commun. (1999) 1709-1710.

    24. [24]

      [8] (a) Q.S. Zong, C.F. Chen, Novel triptycene-based cylindrical macrotricyclic host: synthesis and complexation with paraquat derivatives, Org. Lett. 8 (2006) 211-214;

    25. [25]

      (b) T. Han, C.F. Chen, A triptycene-based bis(crown ether) host: complexation with both paraquat derivatives and dibenzylammonium salts, Org. Lett. 8 (2006) 1069-1072;

    26. [26]

      (c) M. Xue, C.F. Chen, Triptycene-based tetralactam macrocycles: synthesis, structure and complexation with squaraine, Chem. Commun. (2008) 6128-6130;

    27. [27]

      (d) M. Xue, C.F. Chen, Triptycene-derived N(H)-bridged azacalixarenes: synthesis, structure, and encapsulation of small neutral molecules in the solid state, Org. Lett. 11 (2009) 5294-5297;

    28. [28]

      (e) Y. Jiang, J. Cao, J.M. Zhao, J.F. Xiang, C.F. Chen, Synthesis of a triptycenederived bisparaphenylene-34-crown-10 and its complexation with both paraquat and cyclobis(paraquat-p-phenylene), J. Org. Chem. 75 (2010) 1767-1770;

    29. [29]

      (f) Y. Jiang, J.B. Guo, C.F. Chen, A bifunctionalized [3]rotaxane and its incorporation into a mechanically interlocked polymer, Chem. Commun. 46 (2010) 5536-5538;

    30. [30]

      (g) Y. Jiang, J.B. Guo, C.F. Chen, A new [3]rotaxane molecular machine based on a dibenzylammonium ion and a triazolium station, Org. Lett. 12 (2010) 4248-4251.

    31. [31]

      [9] C. Zhang, C.F. Chen, Synthesis and analysis of hydroxyl substituted triptycene adducts: the competitive recognition between the hydroxyl substituted triptycenes with 4,40-bipyridine and solvent molecules, CrystEngComm 12 (2010) 3255-3261.

    32. [32]

      [10] X.Z. Zhu, C.F. Chen, A highly efficient approach to [4]pseudocatenanes by threefold metathesis reactions of a triptycene-based tris[2]pseudorotaxane, J. Am. Chem. Soc. 127 (2005) 13158-13159.

  • 加载中
    1. [1]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    2. [2]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    3. [3]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    4. [4]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    5. [5]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    6. [6]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    7. [7]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    8. [8]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    9. [9]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    10. [10]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    11. [11]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    12. [12]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    13. [13]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    14. [14]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    15. [15]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    16. [16]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    17. [17]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    18. [18]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    19. [19]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    20. [20]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

Metrics
  • PDF Downloads(0)
  • Abstract views(640)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return