Citation: Jiang-Kun Ou-Yang, Li-Jun Chen, Lin Xu, Cui-Hong Wang, Hai-Bo Yang. A new family of supramolecular multiferrocenyl rhomboids: Synthesis, characterization, and their electrochemical behavior[J]. Chinese Chemical Letters, ;2013, 24(6): 471-474. shu

A new family of supramolecular multiferrocenyl rhomboids: Synthesis, characterization, and their electrochemical behavior

  • Corresponding author: Hai-Bo Yang, 
  • Received Date: 25 February 2013
    Available Online: 22 March 2013

  • Two novel, supramolecular,multiferrocenyl rhomboids 5 and 6 have been successfully constructed from newly designed 60° ferrocenyl donor precursor 1 via coordination-driven self-assembly. The structures of all multiferrocenyl rhomboids were characterized by multinuclear NMR (1H and 31P), CSI-TOF-MS, and PM6 semi-empirical molecular simulation, and their electrochemical behaviors have been investigated.
  • 加载中
    1. [1]

      [1] (a) D.R. van Staveren, N. Metzler-Nolte, Bioorganometallic chemistry of ferrocene, Chem. Rev. 104 (2004) 5931-5986;

    2. [2]

      (b) M.M. Collinson, Electrochemistry: an important tool to study and create new sol-gel-derived materials, Acc. Chem. Res. 40 (2007) 777-783.

    3. [3]

      [2] (a) M.C. Daniel, J. Ruiz, D. Astruc, Supramolecular H-bonded assemblies of redoxactive metallodendrimers and positive and unusual dendritic effects on the recognition of H2PO4, J. Am. Chem. Soc. 125 (2003) 1150-1151;

    4. [4]

      (b) D.L. Stone, D.K. Smith, P.T. McGrail, Ferrocene encapsulated within symmetric dendrimers: a deeper understanding of dendritic effects on redox potential, J. Am. Chem. Soc. 124 (2002) 856-864.

    5. [5]

      [3] (a) J.R. Nitschke, Construction, substitution, and sorting of metallo-organic structures via subcomponent self-assembly, Acc. Chem. Res. 40 (2007) 103-112;

    6. [6]

      (b) B.H. Northrop, H.B. Yang, P.J. Stang, Coordination-driven self-assembly of functionalized supramolecular metallacycles, Chem. Commun. (2008) 5896-5908;

    7. [7]

      (c) R. Chakrabarty, P.S. Mukherjee, P.J. Stang, Supramolecular coordination: selfassembly of finite two- and three-dimensional ensembles, Chem. Rev. 111 (2011) 6810-6918.

    8. [8]

      [4] (a) G.Z. Zhao, L.J. Chen, C.H. Wang, et al., Facile self-assembly of dendritic multiferrocenyl hexagons and their electrochemistry, Organometallics 29 (2010) 6137-6140;

    9. [9]

      (b) L.J. Chen, Q.J. Li, J. He, et al., Design and construction of endo-functionalized multiferrocenyl hexagons via coordination-driven self-assembly and their electrochemistry, J. Org. Chem. 77 (2012) 1148-1153.

    10. [10]

      [5] K.Ghosh, Y. Zhao, H.B. Yang, et al., Synthesis of a new family of hexakisferrocenyl hexagons and their electrochemical behavior, J. Org. Chem. 73 (2008) 8553-8557.

    11. [11]

      [6] G. Brinke, O. Ikkala, Functional materials based on self-assembly of polymeric supramolecules, Science 295 (2002) 2407-2409.

    12. [12]

      [7] G.Z. Zhao, Q.J. Li, L.J. Chen, et al., Facile self-assembly of supramolecular hexakisferrocenyl triangles via coordination-driven self-assembly and their electrochemical behavior, Organometallics 30 (2011) 3637-3642.

    13. [13]

      [8] S. Leininger, M. Schmitz, P.J. Stang, Molecular architecture via coordination: selfassembly of pseudohexagonal A23X23-macrocycles, Org. Lett. 1 (1999) 1921-1923.

    14. [14]

      [9] Q. Han, Q.J. Li, J. He, et al., Design and synthesis of 60° dendritic donor ligands and their coordination-driven self-assembly into supramolecular rhomboidal metallodendrimers, J. Org. Chem. 76 (2011) 9660-9669.

    15. [15]

      [10] J. He, Z. Abliz, R. Zhang, Y. Liang, K. Ding, Direct on-line method to monitor the dynamic structure of noncovalent titanium complexes in solution by using cold-spray ionization time-of-flight mass spectrometry, Anal. Chem. 78 (2006) 4737-4740.

    16. [16]

      [11] H. Matsuda, Y.Z. Ayabe, The theory of the cathode-ray polarography of randlessevcik, Z. Electrochem. 59 (1955) 494-503.

    17. [17]

      [12] A. Diallo, C. Absalon, J. Ruiz, D. Astruc, Ferrocenyl-terminated redox stars: synthesis and electrostatic effects in mixed-valence stabilization, J. Am. Chem. Soc. 133 (2011) 629-641.

    18. [18]

      [13] C.F. Shu, H.M. Shen, Organometallic ferrocenyl dendrimers: synthesis, characterizationand redox properties, J. Mater. Chem. 7 (1997) 47-52.

  • 加载中
    1. [1]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    2. [2]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    3. [3]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    4. [4]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    5. [5]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    6. [6]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    7. [7]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    8. [8]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    9. [9]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    10. [10]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    11. [11]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    12. [12]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    13. [13]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    14. [14]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    15. [15]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    16. [16]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    17. [17]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    18. [18]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    19. [19]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    20. [20]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

Metrics
  • PDF Downloads(0)
  • Abstract views(678)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return