Citation: Ke-Rang Wang, Hong-Wei An, Dan Han, Feng Qian, Xiao-Liu Li. Fluorescence quenching of triazatruxene-based glycocluster induced by peanut agglutinin lectin[J]. Chinese Chemical Letters, ;2013, 24(6): 467-470. shu

Fluorescence quenching of triazatruxene-based glycocluster induced by peanut agglutinin lectin

  • Corresponding author: Ke-Rang Wang,  Xiao-Liu Li, 
  • Received Date: 5 February 2013
    Available Online: 12 March 2013

  • A novel triazatruxene-based fluorescent glycocluster was synthesized and its selective binding interactions with PNA lectin were investigated by fluorescence spectroscopy, CD spectroscopy, and a turbidity assay. The glycocluster exhibited a strong binding affinity for PNA lectin with a Stern-Volmer quenching constant of 5.8×105 mol-1 L.
  • 加载中
    1. [1]

      [1] D.H. Dube, C.R. Bertozzi, Glycans in cancer and inflammation-potential for therapeutics and diagnostics, Nat. Rev. Drug Discov. 4 (2005) 477-488.

    2. [2]

      [2] P.M. Rudd, T. Elliott, P. Cresswell, I.A. Wilson, R.A. Dwek, Glycosylation and the immune system, Science 291 (2001) 2370-2376.

    3. [3]

      [3] A. Bernardi, J. Jiménez-Barbero, A. Casnati, et al., Multivalent glycoconjugates as anti-pathogenic agents, Chem. Soc. Rev. (2013), http://dx.doi.org/10.1039/ c2cs35408j.

    4. [4]

      [4] J.J. Lundquist, E.J. Toone, The cluster glycoside effect, Chem. Rev. 102 (2002) 555-578.

    5. [5]

      [5] M. Mammen, S.K. Choi, G.M. Whitesides, Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors, Angew. Chem. Int. Ed. 37 (1998) 2754-2794.

    6. [6]

      [6] R.J. Pieters, Maximising multivalency effects in protein-carbohydrate interactions, Org. Biomol. Chem. 7 (2009) 2013-2025.

    7. [7]

      [7] M. Hartmann, T.K. Lindhorst, The bacterial lectin FimH, a target for drug discovery-carbohydrate inhibitors of type 1 fimbriae-mediated bacterial adhesion, Eur J. Org. Chem. (2011) 3583-3609.

    8. [8]

      [8] D. Deniaud, K. Julienne, S.G. Gouin, Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands, Org. Biomol. Chem. 9 (2011) 966-979.

    9. [9]

      [9] K. Petkau, A. Kaeser, I. Fischer, L. Brunsveld, A.P.H.J. Schenning, Pre- and postfunctionalized self-assembled π-conjugated fluorescent organic nanoparticles for dual targeting, J. Am. Chem. Soc. 133 (2011) 17063-17071.

    10. [10]

      [10] G.T. Noble, S.L. Flitsch, K.P. Liem, S.J. Webb, Assessing the cluster glycoside effect during the binding of concanavalin A to mannosylated artificial lipid rafts, Org. Biomol. Chem. 7 (2009) 5245-5254.

    11. [11]

      [11] B.K. Delivery, Z. Gorityala, M. Lu, et al., Design of a "turn-off/turn-on" biosensor: understanding carbohydrate-lectin interactions for use in noncovalent drug, J. Am. Chem. Soc. 134 (2012) 15229-15232.

    12. [12]

      [12] Y. Koshi, E. Nakata, H. Yamane, I. Hamachi, A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates, J. Am. Chem. Soc. 128 (2006) 10413-10422.

    13. [13]

      [13] R.L. Phillips, I.B. Kim, L.M. Tolbert, U.H.F. Bunz, Fluorescence self-quenching of a mannosylated poly(p-phenyleneethynylene) induced by concanavalin A, J. Am. Chem. Soc. 130 (2008) 6952-6954.

    14. [14]

      [14] C. Xue, S.P. Jog, P. Murthy, H. Liu, Synthesis of highly water-soluble fluorescent conjugated glycopoly(p-phenylene)s for lectin and Escherichia coli, Biomacromolecules 7 (2006) 2470-2474.

    15. [15]

      [15] K.R. Wang, H.W. An, L. Wu, J.C. Zhang, X.L. Li, Chiral self-assembly of lactose functionalized perylene bisimides as multivalent glycoclusters, Chem. Commun. 48 (2012) 5644-5646.

    16. [16]

      [16] K.R. Wang, H.W. An, Y.Q. Wang, J.C. Zhang, X.L. Li, Multivalent glycoclusters constructed by chiral self-assembly of mannose functionalized perylene bisimide, Org. Biomol. Chem. 11 (2013) 1007-1012.

    17. [17]

      [17] K.R. Wang, Y.Q. Wang, J. Li, et al., Synthesis of perylene bisimide-centered glycodendrimer and its interactions with concanavalin A, Bioorg. Med. Chem. Lett. 23 (2013) 480-483.

    18. [18]

      [18] K.R. Wang, Y.Q. Wang, H.W. An, J.C. Zhang, X.L. Li, A triazatruxene-based glycocluster as a fluorescent sensor for concanavalin A, Chem. Eur. J. 19 (2013) 2903-2909.

    19. [19]

      [19] J. Ni, S. Singh, L.X. Wang, Synthesis of maleimide-activated carbohydrates as chemoselective tags for site-specific glycosylation of peptides and proteins, Bioconjug. Chem. 14 (2003) 232-238.

    20. [20]

      [20] R.V. Vico, J. Voskuhl, B.J. Ravoo, Multivalent interaction of cyclodextrin vesicles, carbohydrate guests, and lectins: a kinetic investigation, Langmuir 27 (2011) 1391-1397.

    21. [21]

      [21] C.H. Xue, F.T. Luo, H.Y. Liu, Post-polymerization functionalization approach for highly water-soluble well-defined regioregular head-to-tail glycopolythiophenes, Macromolecules 40 (2007) 6863-6870.

    22. [22]

      [22] R.L. Phillips, I.B. Kim, B.E. Carson, et al., Sugar-substituted poly(p-phenyleneethynylene) s: sensitivity enhancement toward lectins and bacteria, Macromolecules 41 (2008) 7316-7320.

    23. [23]

      [23] R. Loris, T. Hamelryck, J. Bouckaert, L. Wyns, Legume lectin structure, Biochim. Biophys. Acta 1383 (1998) 9-36.

    24. [24]

      [24] N. Varejão, M.T.S. Correia, D. Foguel, Characterization of the unfolding process of the tetrameric and dimeric forms of Cratylia mollis seed lectin (CRAMOLL 1): effects of natural fragmentation on protein stability, Biochemistry 50 (2011) 7330-7340.

    25. [25]

      [25] Y. Wang, J.C. Gildersleeve, A. Basu, M.B. Zimmt, Photo- and biophysical studies of lectin-conjugated fluorescent nanoparticles: reduced sensitivity in high density assays, J. Phys. Chem. B 114 (2010) 14487-14494.

    26. [26]

      [26] C.W. Cairo, J.E. Gestwicki, M. Kanai, L.L. Kiessling, Control of multivalent interactions by binding epitope density, J. Am. Chem. Soc. 124 (2002) 1615-1619.

    27. [27]

      [27] N. Kamiya, M. Tominaga, S. Sato, M. Fujita, Saccharide-coated M12L24 molecular spheres that form aggregates by multi-interaction with proteins, J. Am. Chem. Soc. 129 (2007) 3816-3817.

    28. [28]

      [28] S. Schmid, A. Mishra, P. Bäuerle, Carbohydrate-functionalized oligothiophenes for concanavalin A recognition, Chem. Commun. 47 (2011) 1324-1326.

  • 加载中
    1. [1]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    2. [2]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    3. [3]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    4. [4]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    5. [5]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    6. [6]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    7. [7]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    8. [8]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    9. [9]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    10. [10]

      Zhichao ZhouFuqian ChenXiaotong XiaDong YeRong ZhouLei LiTao DengZhenhua DingFang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970

    11. [11]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    12. [12]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    13. [13]

      Peide ZhuYangjia LiuYaoyao TangSiqi ZhuXinyang LiuLei YinQuan LiuZhiqiang YuQuan XuDixian LuoJuncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689

    14. [14]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    15. [15]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    16. [16]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    17. [17]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    18. [18]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

    19. [19]

      Biao HuangTao TangFushou LiuShi-Hui ChenZhi-Ling ZhangMingxi ZhangRan Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694

    20. [20]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

Metrics
  • PDF Downloads(0)
  • Abstract views(689)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return