Citation:
Ke-Rang Wang, Hong-Wei An, Dan Han, Feng Qian, Xiao-Liu Li. Fluorescence quenching of triazatruxene-based glycocluster induced by peanut agglutinin lectin[J]. Chinese Chemical Letters,
;2013, 24(6): 467-470.
-
A novel triazatruxene-based fluorescent glycocluster was synthesized and its selective binding interactions with PNA lectin were investigated by fluorescence spectroscopy, CD spectroscopy, and a turbidity assay. The glycocluster exhibited a strong binding affinity for PNA lectin with a Stern-Volmer quenching constant of 5.8×105 mol-1 L.
-
Keywords:
- Triazatruxene,
- Glycocluster,
- Fluorescence quenching,
- Peanut agglutinin
-
-
-
[1]
[1] D.H. Dube, C.R. Bertozzi, Glycans in cancer and inflammation-potential for therapeutics and diagnostics, Nat. Rev. Drug Discov. 4 (2005) 477-488.
-
[2]
[2] P.M. Rudd, T. Elliott, P. Cresswell, I.A. Wilson, R.A. Dwek, Glycosylation and the immune system, Science 291 (2001) 2370-2376.
-
[3]
[3] A. Bernardi, J. Jiménez-Barbero, A. Casnati, et al., Multivalent glycoconjugates as anti-pathogenic agents, Chem. Soc. Rev. (2013), http://dx.doi.org/10.1039/ c2cs35408j.
-
[4]
[4] J.J. Lundquist, E.J. Toone, The cluster glycoside effect, Chem. Rev. 102 (2002) 555-578.
-
[5]
[5] M. Mammen, S.K. Choi, G.M. Whitesides, Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors, Angew. Chem. Int. Ed. 37 (1998) 2754-2794.
-
[6]
[6] R.J. Pieters, Maximising multivalency effects in protein-carbohydrate interactions, Org. Biomol. Chem. 7 (2009) 2013-2025.
-
[7]
[7] M. Hartmann, T.K. Lindhorst, The bacterial lectin FimH, a target for drug discovery-carbohydrate inhibitors of type 1 fimbriae-mediated bacterial adhesion, Eur J. Org. Chem. (2011) 3583-3609.
-
[8]
[8] D. Deniaud, K. Julienne, S.G. Gouin, Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands, Org. Biomol. Chem. 9 (2011) 966-979.
-
[9]
[9] K. Petkau, A. Kaeser, I. Fischer, L. Brunsveld, A.P.H.J. Schenning, Pre- and postfunctionalized self-assembled π-conjugated fluorescent organic nanoparticles for dual targeting, J. Am. Chem. Soc. 133 (2011) 17063-17071.
-
[10]
[10] G.T. Noble, S.L. Flitsch, K.P. Liem, S.J. Webb, Assessing the cluster glycoside effect during the binding of concanavalin A to mannosylated artificial lipid rafts, Org. Biomol. Chem. 7 (2009) 5245-5254.
-
[11]
[11] B.K. Delivery, Z. Gorityala, M. Lu, et al., Design of a "turn-off/turn-on" biosensor: understanding carbohydrate-lectin interactions for use in noncovalent drug, J. Am. Chem. Soc. 134 (2012) 15229-15232.
-
[12]
[12] Y. Koshi, E. Nakata, H. Yamane, I. Hamachi, A fluorescent lectin array using supramolecular hydrogel for simple detection and pattern profiling for various glycoconjugates, J. Am. Chem. Soc. 128 (2006) 10413-10422.
-
[13]
[13] R.L. Phillips, I.B. Kim, L.M. Tolbert, U.H.F. Bunz, Fluorescence self-quenching of a mannosylated poly(p-phenyleneethynylene) induced by concanavalin A, J. Am. Chem. Soc. 130 (2008) 6952-6954.
-
[14]
[14] C. Xue, S.P. Jog, P. Murthy, H. Liu, Synthesis of highly water-soluble fluorescent conjugated glycopoly(p-phenylene)s for lectin and Escherichia coli, Biomacromolecules 7 (2006) 2470-2474.
-
[15]
[15] K.R. Wang, H.W. An, L. Wu, J.C. Zhang, X.L. Li, Chiral self-assembly of lactose functionalized perylene bisimides as multivalent glycoclusters, Chem. Commun. 48 (2012) 5644-5646.
-
[16]
[16] K.R. Wang, H.W. An, Y.Q. Wang, J.C. Zhang, X.L. Li, Multivalent glycoclusters constructed by chiral self-assembly of mannose functionalized perylene bisimide, Org. Biomol. Chem. 11 (2013) 1007-1012.
-
[17]
[17] K.R. Wang, Y.Q. Wang, J. Li, et al., Synthesis of perylene bisimide-centered glycodendrimer and its interactions with concanavalin A, Bioorg. Med. Chem. Lett. 23 (2013) 480-483.
-
[18]
[18] K.R. Wang, Y.Q. Wang, H.W. An, J.C. Zhang, X.L. Li, A triazatruxene-based glycocluster as a fluorescent sensor for concanavalin A, Chem. Eur. J. 19 (2013) 2903-2909.
-
[19]
[19] J. Ni, S. Singh, L.X. Wang, Synthesis of maleimide-activated carbohydrates as chemoselective tags for site-specific glycosylation of peptides and proteins, Bioconjug. Chem. 14 (2003) 232-238.
-
[20]
[20] R.V. Vico, J. Voskuhl, B.J. Ravoo, Multivalent interaction of cyclodextrin vesicles, carbohydrate guests, and lectins: a kinetic investigation, Langmuir 27 (2011) 1391-1397.
-
[21]
[21] C.H. Xue, F.T. Luo, H.Y. Liu, Post-polymerization functionalization approach for highly water-soluble well-defined regioregular head-to-tail glycopolythiophenes, Macromolecules 40 (2007) 6863-6870.
-
[22]
[22] R.L. Phillips, I.B. Kim, B.E. Carson, et al., Sugar-substituted poly(p-phenyleneethynylene) s: sensitivity enhancement toward lectins and bacteria, Macromolecules 41 (2008) 7316-7320.
-
[23]
[23] R. Loris, T. Hamelryck, J. Bouckaert, L. Wyns, Legume lectin structure, Biochim. Biophys. Acta 1383 (1998) 9-36.
-
[24]
[24] N. Varejão, M.T.S. Correia, D. Foguel, Characterization of the unfolding process of the tetrameric and dimeric forms of Cratylia mollis seed lectin (CRAMOLL 1): effects of natural fragmentation on protein stability, Biochemistry 50 (2011) 7330-7340.
-
[25]
[25] Y. Wang, J.C. Gildersleeve, A. Basu, M.B. Zimmt, Photo- and biophysical studies of lectin-conjugated fluorescent nanoparticles: reduced sensitivity in high density assays, J. Phys. Chem. B 114 (2010) 14487-14494.
-
[26]
[26] C.W. Cairo, J.E. Gestwicki, M. Kanai, L.L. Kiessling, Control of multivalent interactions by binding epitope density, J. Am. Chem. Soc. 124 (2002) 1615-1619.
-
[27]
[27] N. Kamiya, M. Tominaga, S. Sato, M. Fujita, Saccharide-coated M12L24 molecular spheres that form aggregates by multi-interaction with proteins, J. Am. Chem. Soc. 129 (2007) 3816-3817.
-
[28]
[28] S. Schmid, A. Mishra, P. Bäuerle, Carbohydrate-functionalized oligothiophenes for concanavalin A recognition, Chem. Commun. 47 (2011) 1324-1326.
-
[1]
-
-
-
[1]
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
-
[2]
Gongcheng Ma , Qihang Ding , Yuding Zhang , Yue Wang , Jingjing Xiang , Mingle Li , Qi Zhao , Saipeng Huang , Ping Gong , Jong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293
-
[3]
Ying Xu , Chengying Shen , Hailong Yuan , Wei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324
-
[4]
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
-
[5]
Ziyou Zhang , Te Ji , Hongliang Dong , Zhiqiang Chen , Zhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542
-
[6]
Shuwen SUN , Gaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368
-
[7]
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
-
[8]
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
-
[9]
Jia-Li Xie , Tian-Jin Xie , Yu-Jie Luo , Kai Mao , Cheng-Zhi Huang , Yuan-Fang Li , Shu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137
-
[10]
Zhichao Zhou , Fuqian Chen , Xiaotong Xia , Dong Ye , Rong Zhou , Lei Li , Tao Deng , Zhenhua Ding , Fang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970
-
[11]
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
-
[12]
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
-
[13]
Peide Zhu , Yangjia Liu , Yaoyao Tang , Siqi Zhu , Xinyang Liu , Lei Yin , Quan Liu , Zhiqiang Yu , Quan Xu , Dixian Luo , Juncheng Wang . Bi-doped carbon quantum dots functionalized liposomes with fluorescence visualization imaging for tumor diagnosis and treatment. Chinese Chemical Letters, 2024, 35(4): 108689-. doi: 10.1016/j.cclet.2023.108689
-
[14]
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
-
[15]
Zheng Zhao , Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270
-
[16]
Kangmin Wang , Liqiu Wan , Jingyu Wang , Chunlin Zhou , Ke Yang , Liang Zhou , Bijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554
-
[17]
Ya-Wen Zhang , Ming-Ming Gan , Li-Ying Sun , Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356
-
[18]
Xu Qu , Pengzhao Wu , Kaixuan Duan , Guangwei Wang , Liang-Liang Gao , Yuan Guo , Jianjian Zhang , Donglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681
-
[19]
Biao Huang , Tao Tang , Fushou Liu , Shi-Hui Chen , Zhi-Ling Zhang , Mingxi Zhang , Ran Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694
-
[20]
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(689)
- HTML views(2)