Citation: Sha-Sha Zhai, Yong Chen, Yu Liu. Selective binding of bile salts by β-cyclodextrin derivatives with appended quinolyl arms[J]. Chinese Chemical Letters, ;2013, 24(6): 442-446. shu

Selective binding of bile salts by β-cyclodextrin derivatives with appended quinolyl arms

  • Corresponding author: Yu Liu, 
  • Received Date: 28 February 2013
    Available Online: 26 March 2013

  • Two β-cyclodextrin derivatives bearing appended quinolyl and isoquinolyl arms, i.e. mono-(6-quinolyl-6-deoxy)-β-cyclodextrin (1) and mono-(6-isoquinolyl-6-deoxy)-β-cyclodextrin (2) were synthesized in satisfactory yields and fully characterized. Their original conformations and binding behaviors toward four bile salt guests, that is, sodium cholate (CA), sodium deoxycholate (DCA), sodium glycocholate (GCA), and sodium taurocholate (TCA), were investigated by means of fluorescence, circular dichroism and 2D NMR spectroscopy. The study of solution structures revealed that both quinolyl and isoquinolyl arms were located outside the cyclodextrin cavity. The results obtained from the fluorescence titrations showed that the binding abilities of hosts 1 and 2 with selected bile salts varied in an order of DCA > CA > GCA. The selective binding of hosts toward bile salt guests was discussed from the viewpoints of induced-fit and multiple binding.
  • 加载中
    1. [1]

      [1] (a) S. Monti, S. Sortino, Photoprocesses of photosensitizing drugs within cyclodextrin cavities, Chem. Soc. Rev. 31 (2002) 287-300;

    2. [2]

      (b) W. Saenger, J. Jacob, K. Gessler, et al., Structures of the common cyclodextrins and their larger analogues beyond the doughnut, Chem. Rev. 98 (1998) 1787-1802.

    3. [3]

      [2] Y. Chen, Y. Liu, Cyclodextrin-based bioactive nanosupramolecules, Chem. Soc. Rev. 39 (2010) 495-505.

    4. [4]

      [3] G. Wenz, Cyclodextrins as building blocks for supramolecular structures and functional units, Angew. Chem. Int. Ed. Engl. 33 (1994) 803-822.

    5. [5]

      [4] (a) B. Nguyen, S. Neidle, W.D. Wilson, A role for water molecules in DNA-ligand minor groove recognition, Acc. Chem. Res. 42 (2009) 11-21;

    6. [6]

      (b) S.K. Kim, D.H. Lee, J.I. Hong, J. Yoon, Chemosensors for pyrophosphate, Acc. Chem. Res. 42 (2009) 23-31;

    7. [7]

      (c) M. Tomizawa, J.E. Casida, Molecular recognition of neonicotinoid insecticides: the determinants of life or death, Acc. Chem. Res. 42 (2009) 260-269;

    8. [8]

      (d) Y. Liu, Y. Chen, Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers, Acc. Chem. Res. 39 (2006) 681-691.

    9. [9]

      [5] M.J.W. Ludden, X. Li, J. Greve, et al., Assembly of bionanostructures onto bcyclodextrin molecular printboards for antibody recognition and lymphocyte cell counting, J. Am. Chem. Soc. 130 (2008) 6964-6973.

    10. [10]

      [6] (a) Y. Liu, H.X. Wu, Y. Chen, G.S. Chen, Molecular binding behaviors of bile salts by bridged and metallobridged bis(β-cyclodextrin)s with naphthalenecarboxyl linkers, Supramol. Chem. 21 (2009) 409-415;

    11. [11]

      (b) Y. Liu, E.C. Yang, Y.W. Yang, et al., Thermodynamics of the molecular and chiral recognition of cycloalkanols and camphor by modified β-cyclodextrins possessing simple aromatic tethers, J. Org. Chem. 69 (2004) 173-180;

    12. [12]

      (c) Y. Liu, Y.L. Zhao, H.Y. Zhang, et al., Spectrophotometric study of inclusion complexation of aliphatic alcohols by β-cyclodextrins with azobenzene tether, J. Phys. Chem. B 108 (2004) 8836-8843.

    13. [13]

      [7] (a) J. Szejtli, Introduction and general overview of cyclodextrin chemistry, Chem. Rev. 98 (1998) 1743-1754;

    14. [14]

      (b) M.V. Rekharsky, Y. Inoue, Complexation thermodynamics of cyclodextrins, Chem. Rev. 98 (1998) 1875-1918;

    15. [15]

      (c) K. Takahashi, Organic reactions mediated by cyclodextrins, Chem. Rev. 98 (1998) 2013-2034;

    16. [16]

      (d) R. Breslow, S.D. Dong, Biomimetic reactions catalyzed by cyclodextrins and their derivatives, Chem. Rev. 98 (1998) 1997-2012.

    17. [17]

      [8] Y. Chen, Y. Liu, Supramolecular assembly of cyclodextrins and its interactions with nucleic acid, Chin. J. Org. Chem. 32 (2012) 805-814.

    18. [18]

      [9] M. Yu, Y.P. Liu, Y. Chen, N. Zhang, Y. Liu, Non-covalently functionalized fluorescent carbon nanotubes: a supramolecular approach of selective zinc ions sensing in living cells, Chin. J. Chem. 30 (2012) 1948-1952.

    19. [19]

      [10] P. Wallimann, T. Marti, A. Fürer, F. Diederich, Steroids in molecular recognition, Chem. Rev. 97 (1997) 1567-1608.

    20. [20]

      [11] T. Kuwabara, H. Nakajima, M. Nanasawa, A. Ueno, Color change indicators for molecules using methyl red-modified cyclodextrins, Anal. Chem. 71 (1999) 2844-2849.

    21. [21]

      [12] H. Ikeda, M. Nakamura, N. Ise, F. Toda, A. Ueno, NMR studies of conformations of Ndansyl-L-leucine-appended and N-dansyl-D-leucine-appended β-cyclodextrin as fluorescent indicators formolecular recognition, J. Org. Chem. 62 (1997) 1411-1418.

    22. [22]

      [13] H. Ikeda, M. Nakamura, N. Ise, et al., Fluorescent cyclodextrins formolecule sensing: fluorescent properties, NMR characterization, and inclusion phenomena of Ndansylleucine-modified cyclodextrins, J. Am. Chem. Soc. 118 (1996) 10980-10988.

    23. [23]

      [14] M. Nakamura, A. Ikeda, N. Ise, et al., Dansyl-modified β-cyclodextrin with a monensin residue as a hydrophobic and metal responsive cap, J. Chem. Soc. Chem. Commun. (1995) 721-722.

    24. [24]

      [15] K.D.R. Setchell, J.M. Street, J. Sjovall, Fecal bile acids, in: K.D.R. Setchell, D. Kritcheveky, P.P. Nair (Eds.), The Bile Acids: Methods and Applications, Plenum Press, New York, 1988, pp. 441-570.

    25. [25]

      [16] (a) P.R. Cabrer, E.A. Parrilla, F. Meijide, et al., Complexation of sodium cholate and sodium deoxycholate by β-cyclodextrin and derivatives, Langmuir 15 (1999) 5489-5495;

    26. [26]

      (b) A.P. Singh, P.R. Cabrer, E.A. Parrilla, F. Meijide, J.V. Tato, Complexation of 6-deoxy-6-(aminoethyl)amino-β-cyclodextrin with sodium cholate and sodium deoxycholate, J. Inclusion Phenom. Macrocyclic Chem. 35 (1999) 335-348;

    27. [27]

      (c) P.R. Cabrer, E.A. Parrilla, W.A. Soufi, et al., Complexation of bile salts by natural cyclodextrins, Supramol. Chem. 15 (2003) 33-43.

    28. [28]

      [17] N. Li, Y. Chen, Y.M. Zhang, Z.Q. Li, Y. Liu, Binding thermodynamics of quinolinylmodified-cyclodextrins with bile salts, Sci. China Ser. B: Chem. 40 (2010) 1355-1362.

    29. [29]

      [18] Y. Liu, J. Shi, D.S. Guo, Novel per-methylated β-cyclodextrin derivatives appended with chromophores as efficient fluorescent sensors for the molecular recognition of bile salts, J. Org. Chem. 72 (2007) 8227-8234.

    30. [30]

      [19] T. Ogoshi, Y. Takashima, H. Yamaguchi, A. Harada, Cyclodextrin-grafted poly-(phenylene ethynylene) with chemically-responsive properties, Chem. Commun. (2006) 3702-3704.

    31. [31]

      [20] Y. Liu, B.H. Han, S.X. Sun, T. Wada, Y. Inoue, Molecular recognition study on supramolecular system. 20. Molecular recognition and enantioselectivity of aliphatic alcohols by L-tryptophan-modified β-cyclodextrin, J. Org. Chem. 64 (1999) 1487-1493.

    32. [32]

      [21] M. Kajtar, T.C. Horvath, E. Kuthi, J. Szejtli, A simple rule for predicting circular dichroism induced in aromatic guests by cyclodextrin hosts in inclusion complexes, Acta Chim. Acad. Sci. Hung. 110 (1982) 327-355.

    33. [33]

      [22] M. Kodaka, A general rule for circular dichroisminduced by a chiral macrocycle, J. Am. Chem. Soc. 115 (1993) 3702-3705.

    34. [34]

      [23] F.V. Bright, G.C. Catena, A thermodynamic study on the effects of beta-cyclodextrin inclusion with anilino-naphthyl sulfonates, Anal. Chem. 61 (1989) 905-909.

    35. [35]

      [24] Y. Liu, B.H. Han, H.Y. Zhang, Spectroscopic studies on molecular recognition of modified cyclodextrins, Curr. Org. Chem. 8 (2004) 35-46.

  • 加载中
    1. [1]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    2. [2]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    3. [3]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    4. [4]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    5. [5]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    6. [6]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    7. [7]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    8. [8]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    9. [9]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    10. [10]

      Siwei WangWei-Lei ZhouYong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261

    11. [11]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    12. [12]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    13. [13]

      Mingqi WangShixin FaJiate YuGuoxian ZhangYi YanQing LiuQiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124

    14. [14]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    15. [15]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    16. [16]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    17. [17]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    18. [18]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    19. [19]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    20. [20]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

Metrics
  • PDF Downloads(0)
  • Abstract views(684)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return