Citation: Sha-Sha Zhai, Yong Chen, Yu Liu. Selective binding of bile salts by β-cyclodextrin derivatives with appended quinolyl arms[J]. Chinese Chemical Letters, ;2013, 24(6): 442-446.
-
Two β-cyclodextrin derivatives bearing appended quinolyl and isoquinolyl arms, i.e. mono-(6-quinolyl-6-deoxy)-β-cyclodextrin (1) and mono-(6-isoquinolyl-6-deoxy)-β-cyclodextrin (2) were synthesized in satisfactory yields and fully characterized. Their original conformations and binding behaviors toward four bile salt guests, that is, sodium cholate (CA), sodium deoxycholate (DCA), sodium glycocholate (GCA), and sodium taurocholate (TCA), were investigated by means of fluorescence, circular dichroism and 2D NMR spectroscopy. The study of solution structures revealed that both quinolyl and isoquinolyl arms were located outside the cyclodextrin cavity. The results obtained from the fluorescence titrations showed that the binding abilities of hosts 1 and 2 with selected bile salts varied in an order of DCA > CA > GCA. The selective binding of hosts toward bile salt guests was discussed from the viewpoints of induced-fit and multiple binding.
-
Keywords:
- Cyclodextrin derivatives,
- Bile salts,
- Molecular recognition
-
-
[1]
[1] (a) S. Monti, S. Sortino, Photoprocesses of photosensitizing drugs within cyclodextrin cavities, Chem. Soc. Rev. 31 (2002) 287-300;
-
[2]
(b) W. Saenger, J. Jacob, K. Gessler, et al., Structures of the common cyclodextrins and their larger analogues beyond the doughnut, Chem. Rev. 98 (1998) 1787-1802.
-
[3]
[2] Y. Chen, Y. Liu, Cyclodextrin-based bioactive nanosupramolecules, Chem. Soc. Rev. 39 (2010) 495-505.
-
[4]
[3] G. Wenz, Cyclodextrins as building blocks for supramolecular structures and functional units, Angew. Chem. Int. Ed. Engl. 33 (1994) 803-822.
-
[5]
[4] (a) B. Nguyen, S. Neidle, W.D. Wilson, A role for water molecules in DNA-ligand minor groove recognition, Acc. Chem. Res. 42 (2009) 11-21;
-
[6]
(b) S.K. Kim, D.H. Lee, J.I. Hong, J. Yoon, Chemosensors for pyrophosphate, Acc. Chem. Res. 42 (2009) 23-31;
-
[7]
(c) M. Tomizawa, J.E. Casida, Molecular recognition of neonicotinoid insecticides: the determinants of life or death, Acc. Chem. Res. 42 (2009) 260-269;
-
[8]
(d) Y. Liu, Y. Chen, Cooperative binding and multiple recognition by bridged bis(β-cyclodextrin)s with functional linkers, Acc. Chem. Res. 39 (2006) 681-691.
-
[9]
[5] M.J.W. Ludden, X. Li, J. Greve, et al., Assembly of bionanostructures onto bcyclodextrin molecular printboards for antibody recognition and lymphocyte cell counting, J. Am. Chem. Soc. 130 (2008) 6964-6973.
-
[10]
[6] (a) Y. Liu, H.X. Wu, Y. Chen, G.S. Chen, Molecular binding behaviors of bile salts by bridged and metallobridged bis(β-cyclodextrin)s with naphthalenecarboxyl linkers, Supramol. Chem. 21 (2009) 409-415;
-
[11]
(b) Y. Liu, E.C. Yang, Y.W. Yang, et al., Thermodynamics of the molecular and chiral recognition of cycloalkanols and camphor by modified β-cyclodextrins possessing simple aromatic tethers, J. Org. Chem. 69 (2004) 173-180;
-
[12]
(c) Y. Liu, Y.L. Zhao, H.Y. Zhang, et al., Spectrophotometric study of inclusion complexation of aliphatic alcohols by β-cyclodextrins with azobenzene tether, J. Phys. Chem. B 108 (2004) 8836-8843.
-
[13]
[7] (a) J. Szejtli, Introduction and general overview of cyclodextrin chemistry, Chem. Rev. 98 (1998) 1743-1754;
-
[14]
(b) M.V. Rekharsky, Y. Inoue, Complexation thermodynamics of cyclodextrins, Chem. Rev. 98 (1998) 1875-1918;
-
[15]
(c) K. Takahashi, Organic reactions mediated by cyclodextrins, Chem. Rev. 98 (1998) 2013-2034;
-
[16]
(d) R. Breslow, S.D. Dong, Biomimetic reactions catalyzed by cyclodextrins and their derivatives, Chem. Rev. 98 (1998) 1997-2012.
-
[17]
[8] Y. Chen, Y. Liu, Supramolecular assembly of cyclodextrins and its interactions with nucleic acid, Chin. J. Org. Chem. 32 (2012) 805-814.
-
[18]
[9] M. Yu, Y.P. Liu, Y. Chen, N. Zhang, Y. Liu, Non-covalently functionalized fluorescent carbon nanotubes: a supramolecular approach of selective zinc ions sensing in living cells, Chin. J. Chem. 30 (2012) 1948-1952.
-
[19]
[10] P. Wallimann, T. Marti, A. Fürer, F. Diederich, Steroids in molecular recognition, Chem. Rev. 97 (1997) 1567-1608.
-
[20]
[11] T. Kuwabara, H. Nakajima, M. Nanasawa, A. Ueno, Color change indicators for molecules using methyl red-modified cyclodextrins, Anal. Chem. 71 (1999) 2844-2849.
-
[21]
[12] H. Ikeda, M. Nakamura, N. Ise, F. Toda, A. Ueno, NMR studies of conformations of Ndansyl-L-leucine-appended and N-dansyl-D-leucine-appended β-cyclodextrin as fluorescent indicators formolecular recognition, J. Org. Chem. 62 (1997) 1411-1418.
-
[22]
[13] H. Ikeda, M. Nakamura, N. Ise, et al., Fluorescent cyclodextrins formolecule sensing: fluorescent properties, NMR characterization, and inclusion phenomena of Ndansylleucine-modified cyclodextrins, J. Am. Chem. Soc. 118 (1996) 10980-10988.
-
[23]
[14] M. Nakamura, A. Ikeda, N. Ise, et al., Dansyl-modified β-cyclodextrin with a monensin residue as a hydrophobic and metal responsive cap, J. Chem. Soc. Chem. Commun. (1995) 721-722.
-
[24]
[15] K.D.R. Setchell, J.M. Street, J. Sjovall, Fecal bile acids, in: K.D.R. Setchell, D. Kritcheveky, P.P. Nair (Eds.), The Bile Acids: Methods and Applications, Plenum Press, New York, 1988, pp. 441-570.
-
[25]
[16] (a) P.R. Cabrer, E.A. Parrilla, F. Meijide, et al., Complexation of sodium cholate and sodium deoxycholate by β-cyclodextrin and derivatives, Langmuir 15 (1999) 5489-5495;
-
[26]
(b) A.P. Singh, P.R. Cabrer, E.A. Parrilla, F. Meijide, J.V. Tato, Complexation of 6-deoxy-6-(aminoethyl)amino-β-cyclodextrin with sodium cholate and sodium deoxycholate, J. Inclusion Phenom. Macrocyclic Chem. 35 (1999) 335-348;
-
[27]
(c) P.R. Cabrer, E.A. Parrilla, W.A. Soufi, et al., Complexation of bile salts by natural cyclodextrins, Supramol. Chem. 15 (2003) 33-43.
-
[28]
[17] N. Li, Y. Chen, Y.M. Zhang, Z.Q. Li, Y. Liu, Binding thermodynamics of quinolinylmodified-cyclodextrins with bile salts, Sci. China Ser. B: Chem. 40 (2010) 1355-1362.
-
[29]
[18] Y. Liu, J. Shi, D.S. Guo, Novel per-methylated β-cyclodextrin derivatives appended with chromophores as efficient fluorescent sensors for the molecular recognition of bile salts, J. Org. Chem. 72 (2007) 8227-8234.
-
[30]
[19] T. Ogoshi, Y. Takashima, H. Yamaguchi, A. Harada, Cyclodextrin-grafted poly-(phenylene ethynylene) with chemically-responsive properties, Chem. Commun. (2006) 3702-3704.
-
[31]
[20] Y. Liu, B.H. Han, S.X. Sun, T. Wada, Y. Inoue, Molecular recognition study on supramolecular system. 20. Molecular recognition and enantioselectivity of aliphatic alcohols by L-tryptophan-modified β-cyclodextrin, J. Org. Chem. 64 (1999) 1487-1493.
-
[32]
[21] M. Kajtar, T.C. Horvath, E. Kuthi, J. Szejtli, A simple rule for predicting circular dichroism induced in aromatic guests by cyclodextrin hosts in inclusion complexes, Acta Chim. Acad. Sci. Hung. 110 (1982) 327-355.
-
[33]
[22] M. Kodaka, A general rule for circular dichroisminduced by a chiral macrocycle, J. Am. Chem. Soc. 115 (1993) 3702-3705.
-
[34]
[23] F.V. Bright, G.C. Catena, A thermodynamic study on the effects of beta-cyclodextrin inclusion with anilino-naphthyl sulfonates, Anal. Chem. 61 (1989) 905-909.
-
[35]
[24] Y. Liu, B.H. Han, H.Y. Zhang, Spectroscopic studies on molecular recognition of modified cyclodextrins, Curr. Org. Chem. 8 (2004) 35-46.
-
[1]
-
-
[1]
Fang-Yuan Chen , Wen-Chao Geng , Kang Cai , Dong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161
-
[2]
Cheng-Da Zhao , Huan Yao , Shi-Yao Li , Fangfang Du , Li-Li Wang , Liu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879
-
[3]
Yuanjiao Liu , Xiaoyang Zhao , Songyao Zhang , Yi Wang , Yutuo Zheng , Xinrui Miao , Wenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404
-
[4]
Qihan Lin , Jiabin Xing , Yue-Yang Liu , Gang Wu , Shi-Jia Liu , Hui Wang , Wei Zhou , Zhan-Ting Li , Dan-Wei Zhang . taBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119
-
[5]
Dan Luo , Jinya Tian , Jianqiao Zhou , Xiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444
-
[6]
Caihong Mao , Yanfeng He , Xiaohan Wang , Yan Cai , Xiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362
-
[7]
Zhimin Sun , Xin-Hui Guo , Yue Zhao , Qing-Yu Meng , Li-Juan Xing , He-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162
-
[8]
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
-
[9]
Ping Sun , Yuanqin Huang , Shunhong Chen , Xining Ma , Zhaokai Yang , Jian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005
-
[10]
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
-
[11]
Wenjia Wang , Xingyue He , Xiaojie Wang , Tiantian Zhao , Osamu Muraoka , Genzoh Tanabe , Weijia Xie , Tianjiao Zhou , Lei Xing , Qingri Jin , Hulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656
-
[12]
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
-
[13]
Mingqi Wang , Shixin Fa , Jiate Yu , Guoxian Zhang , Yi Yan , Qing Liu , Qiuyu Zhang . Light-controlled protein imprinted nanospheres with variable recognition specificity. Chinese Chemical Letters, 2025, 36(2): 110124-. doi: 10.1016/j.cclet.2024.110124
-
[14]
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
-
[15]
Rong-Nan Yi , Wei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194
-
[16]
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
-
[17]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[18]
Yadan SUN , Xinfeng LI , Qiang LIU , Oshio Hiroki , Yinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131
-
[19]
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
-
[20]
Zhen Dai , Linzhi Tan , Yeyu Su , Kerui Zhao , Yushun Tian , Yu Liu , Tao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(684)
- HTML views(17)