Citation: Cheng Yang. Recent progress in supramolecular chiral photochemistry[J]. Chinese Chemical Letters, ;2013, 24(6): 437-441. shu

Recent progress in supramolecular chiral photochemistry

  • Corresponding author: Cheng Yang, 
  • Received Date: 25 February 2013
    Available Online: 14 March 2013

  • Chiral photochemistry appears to be a highly challenging topic and still very much in its infancy, especially if comparing to its well-developed thermochemical counterpart. Significant efforts have been devoted in order to improve stereoselectivity of chiral photoreactions, among which, the supramolecular strategy proven the most promising. The present review, motivated by the rapid progress in the supramolecular chiral photochemistry, concentrates on advancements achieved mainly in the last decade. The features and advantages of supramolecular chiral photochemistry are exemplified by representative photoreactions in terms of the chiral hosts/assemblies.
  • 加载中
    1. [1]

      [1] E.L. Eliel, S.H. Wilen, Topics in Stereochemistry, Wiley-Interscience, 2009.

    2. [2]

      [2] Y. Inoue, V. Ramamurthy, Chiral Photochemistry, Marcel Dekker, New York, 2004.

    3. [3]

      [3] Y. Inoue, T. Wada, N. Sugahara, et al., Supramolecular photochirogenesis. 2. Enantiodifferentiating photoisomerization of cyclooctene included and sensitized by 6-O-modified cyclodextrins, J. Org. Chem. 65 (2000) 8041-8050.

    4. [4]

      [4] R. Lu, C. Yang, Y. Cao, et al., Enantiodifferentiating photoisomerization of cyclooctene included and sensitized by aroyl-β-cyclodextrins: a critical enantioselectivity control by substituents, J. Org. Chem. 73 (2008) 7695-7701.

    5. [5]

      [5] C. Yang, T. Mori, T. Wada, Y. Inoue, Supramolecular enantiodifferentiating photoisomerization of (Z,Z)-1,3-cyclooctadiene included and sensitized by naphthalene-modified cyclodextrins, New J. Chem. 31 (2007) 697-702.

    6. [6]

      [6] T. Tamaki, T. Kokubu, Acceleration of the photodimerization of water-soluble anthracenes included by b and γ-cyclodextrins, J. Incl. Phenom. Macro. 2 (1984) 815-821.

    7. [7]

      [7] A. Nakamura, Y. Inoue, Supramolecular catalysis of the enantiodifferentiating[4+4] photocyclodimerization of 2-anthracenecarboxylate by g-cyclodextrin, J. Am. Chem. Soc. 125 (2003) 966-974.

    8. [8]

      [8] C. Yang, G. Fukuhara, A. Nakamura, et al., Enantiodifferentiating [4+4] photocyclodimerization of 2-anthracenecarboxylate catalyzed by 6A,6X-diamino-6A,6X-dideoxy-γ-cyclodextrins: manipulation of product chirality by electrostatic interaction, temperature and solvent in supramolecular photochirogenesis, J. Photochem. Photobiol. A: Chem. 173 (2005) 375-384.

    9. [9]

      [9] H. Ikeda, T. Nihei, A. Ueno, Template-assisted stereoselective photocyclodimerization of 2-anthracenecarboxylic acid by bispyridinio-appended gamma-cyclodextrin, J. Org. Chem. 70 (2005) 1237-1242.

    10. [10]

      [10] C. Yang, T. Mori, Y. Inoue, Supramolecular enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by capped γ-cyclodextrins: critical control of enantioselectivity by cap rigidity, J. Org. Chem. 73 (2008) 5786-5794.

    11. [11]

      [11] C. Yang, T. Mori, Y. Origane, et al., Highly stereoselective photocyclodimerization of a-cyclodextrin-appended anthracene mediated by g-cyclodextrin and cucurbit[8]uril: a dramatic steric effect operating outside the binding site, J. Am. Chem. Soc. 130 (2008) 8574-8575.

    12. [12]

      [12] C. Yang, C. Ke, W. Liang, et al., Dual supramolecular photochirogenesis: ultimate stereocontrol of photocyclodimerization by a chiral scaffold and confining host, J. Am. Chem. Soc. 133 (2011) 13786-13789.

    13. [13]

      [13] L. Luo, G.H. Liao, X.L. Wu, L. Lei, C.H. Tung, L.Z. Wu, γ-Cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate, J. Org. Chem. 74 (2009) 3506-3515.

    14. [14]

      [14] L. Luo, S.F. Cheng, B. Chen, C.H. Tung, L.Z.Wu, Stepwise photochemical-chiral delivery in g-cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate in aqueous solution, Langmuir 26 (2010) 197-249.

    15. [15]

      [15] W. Liang, H.H. Zhang, J.J. Wang, et al., Supramolecular complexation and photocyclodimerization of methyl 3-methoxy-2-naphthoate with modified cyclodextrins, Pure Appl. Chem. 83 (2011), 769-768.

    16. [16]

      [16] T. Bach, H. Bergmann, H. Brummerhop, W. Lewis, K. Harms, The [2+2]-photocycloaddition of aromatic aldehydes and ketones to 3,4-dihydro-2-pyridones: regioselectivity, diastereoselectivity, and reductive ring opening of the product oxetanes, Chem. Eur. J. 7 (2001) 4512.

    17. [17]

      [17] T. Bach, H. Bergmann, B. Grosch, K. Harms, Highly enantioselective intra- and intermolecular [2+2] photocycloaddition reactions of 2-quinolones mediated by a chiral lactam host: host-guest interactions, product configuration, and the origin of the stereoselectivity in solution, J. Am. Chem. Soc. 124 (2002) 7982-7983.

    18. [18]

      [18] A. Bauer, F. Westkämper, S. Grimme, T. Bach, Catalytic enantioselective reactions driven by photoinduced electron transfer, Nature 436 (2005) 1139-1140.

    19. [19]

      [19] S. Breitenlechner, T. Bach, A polymer-bound chiral template for enantioselective photochemical reactions, Angew. Chem. Inter. Ed. 47 (2008) 7957-7959.

    20. [20]

      [20] Y. Kawanami, T.C.S. Pace, J.I. Mizoguchi, et al., Supramolecular complexation and enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid with 4-aminoprolinol derivatives as chiral hydrogen-bonding templates, J. Org. Chem. 74 (2009) 7908-7921.

    21. [21]

      [21] T. Wada, N. Sugahara, M. Kawano, Y. Inoue, First asymmetric photochemistry with nucleosides and DNA: enantiodifferentiating Z-E photoisomerization of cyclooctene, Chem. Lett. (2000) 1174-1175.

    22. [22]

      [22] M. Nishijima, T.C.S. Pace, A. Nakamura, et al., Supramolecular photochirogenesis with biomolecules. Mechanistic studies on the enantiodifferentiation for the photocyclodimerization of 2-anthracenecarboxylate mediated by bovine serum albumin, J. Org. Chem. 72 (2007) 2707-2713.

    23. [23]

      [23] K. Bando, T. Zako, M. Sakono, et al., Bio-supramolecular photochirogenesis with molecular chaperone: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate mediated by prefoldin, Photochem. Photobiol. Sci. 9 (2010) 655-660.

    24. [24]

      [24] Y. Ishida, Y. Kai, S.Y. Kato, et al., Two-component liquid crystals as chiral reaction media: highly enantioselective photodimerization of an anthracene derivative driven by the ordered microenvironment, Angew. Chem. Inter. Ed. 47 (2008) 8241-8245.

    25. [25]

      [25] F.F. Lv, B. Chen, L.Z. Wu, L.P. Zhang, C.H. Tung, Enhanced stereoselectivity in photoelectrocyclization of tropolone ethers via confinement in chiral inductormodified lyotropic liquid crystals, Org. Lett. 10 (2008) 3473-3476.

    26. [26]

      [26] A. Dawn, T. Shiraki, S. Haraguchi, et al., Transcription of chirality in the organogel systems dictates the enantiodifferentiating photodimerization of substituted anthracene, Chem. A Eur. J. 16 (2010) 3676-3689.

    27. [27]

      [27] Y. Nishioka, T. Yamaguchi, M. Kawano, M. Fujita, Asymmetric [2+2] olefin cross photoaddition in a self-assembled host with remote chiral auxiliaries, J. Am. Chem. Soc. 130 (2008) 8160-8161.

  • 加载中
    1. [1]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    2. [2]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    3. [3]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    4. [4]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    5. [5]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    6. [6]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    7. [7]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    8. [8]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    9. [9]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    10. [10]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    11. [11]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    12. [12]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    13. [13]

      Zixi ZouJingyuan WangYian SunQian WangDa-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972

    14. [14]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    15. [15]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    16. [16]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    17. [17]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    18. [18]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    19. [19]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    20. [20]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

Metrics
  • PDF Downloads(0)
  • Abstract views(620)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return