Citation: Santosh V. Goswami, Prashant. B. Thorat, Vijay N. Kadam, Sachin A. Khiste, Sudhakar R. Bhusare. A convenient one-pot three component synthesis of 3-aminoalkylated indoles catalyzed by 3-chlorophenylboronic acid[J]. Chinese Chemical Letters, ;2013, 24(05): 422-424. shu

A convenient one-pot three component synthesis of 3-aminoalkylated indoles catalyzed by 3-chlorophenylboronic acid

  • Corresponding author: Sudhakar R. Bhusare, 
  • Received Date: 24 January 2013
    Available Online: 4 March 2013

  • An efficient protocol was developed for the synthesis of 3-aminoalkylated indoles using 3-chlorophenylboronic acid as a catalyst under ambient temperature conditions. The three-component reaction of indoles, aromatic aldehydes and N-methyl aniline offered corresponding 3-aminoalkylated indoles in excellent yields. This protocol presents some remarkable features such as mild reaction conditions, simple workup procedure and excellent yields.
  • 加载中
    1. [1]

      [1] M. Lounasman, A. Tolvanen, Simple indole alkaloids and those with a nonrearranged monoterpenoid unit, Nat. Prod. Rep. 17 (2000) 175-191.

    2. [2]

      [2] S. Hibino, T. Choshi, Simple indole alkaloids and those with a nonrearranged monoterpenoid unit, Nat. Prod. Rep. 19 (2002) 148-180.

    3. [3]

      [3] J.F. Collinus, Antibiotics, proteins and nucleic acids, Br, Med. Bull. 21 (1965) 223-228.

    4. [4]

      [4] T.R. Garbe, M. Kobayashi, N. Shimizu, N. Takesure, M. Ozawa, H. Yukawa, Indolyl carboxylic acids by condensation of indoles with alpha-keto acids, J. Nat. Prod. 63 (2000) 596-598.

    5. [5]

      [5] B. Bao, Q. Sun, X. Yao, et al., Cytotoxic bisindole alkaloids from a marine sponge Spongosorites sp, J. Nat. Prod. 68 (2005) 711-715.

    6. [6]

      [6] J. Zhu, H. Bienaymé (Eds.), Multicomponent Reactions, Wiley-VCH, Weinheim, 2005.

    7. [7]

      [7] H.R. Hobbs, N.R. Thomas, Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions, Chem. Rev. 107 (2007) 2786-2820.

    8. [8]

      [8] A. Domling, Multicomponent reactions, Chem. Rev. 106 (2006) 17-89.

    9. [9]

      [9] (a) A. Domling, I. Ugi, Multicomponent reactions, Angew. Chem. Int. Ed. 39 (2000) 3168-3210;

    10. [10]

      (b) N. Mizuno, M. Misono, Multicomponent reactions, Chem. Rev. 98 (1998) 199-218.

    11. [11]

      [10] D.K. Yadav, R. Patel, V.P. Srivastava, G. Watel, L.D.S. Yadav, Bromodimethylsulfonium bromide (BDMS)-catalyzed multicomponent synthesis of 3-aminoalkylated indoles, Tetrahedron Lett. 51 (2010) 5701-5703.

    12. [12]

      [11] P. Srihari, V.K. Sing, D.C. Bhunia, J.S. Yadav, One-pot three-component coupling reaction: solvent-free synthesis of novel 3-substituted indoles catalyzed by PMASiO2, Tetrahedron Lett. 50 (2009) 3763-3766.

    13. [13]

      [12] B. Das, J.N. Kumar, A.S. Kumar, K. Damodar, Facile synthesis of 3-[(n-alkylanilino)( aryl)methyl]indoles using TCT, Synthesis (2010) 914-916.

    14. [14]

      [13] V.K. Rao, B.S. Chhikara, A.N. Shirazi, et al., 3-Substitued indoles: one-pot synthesis and evaluation of anticancer and Src kinase inhibitory activities, Bioorg. Med. Chem. Lett. 21 (2011) 3511-3514.

    15. [15]

      [14] V.K. Rao, M.S. Rao, N. Jain, J. Panwar, A. Kumar, Silver triflate catalyzed synthesis of 3-aminoalkylated indoles and evaluation of their antibacterial activities, Org. Med. Chem. Lett. 1 (2011) 10.

    16. [16]

      [15] D. Kundu, A.K. Bagdi, A. Majee, A. Hajra, Zwitterionic-type molten salt: a mild and efficient organocatalyst for the synthesis of 3-aminoalkylated indoles via threecomponent coupling reaction, Synlett 8 (2011) 1165-1167.

    17. [17]

      [16] H. Lopez-Ruiz, H. Briseno-Ortega, S. Rojas-Lima, R. Santillan, N. Farfan, Phenylboronic acid catalyzed-cyanide promoted, one-pot synthesis of 2-(2-hydroxyphenyl) benzoxazole derivatives, Tetrahedron Lett. 52 (2011) 4308-4312.

    18. [18]

      [17] H. Zheng, D.G. Hall, Mild and efficient boronic acid catalysis of Diels-Alder cycloadditions to 2-alkynoic acids, Tetrahedron Lett. 51 (2010) 3561-3564.

    19. [19]

      [18] H. Zheng, M. Lejkowski, D.G. Hall, Mild and selective boronic acid catalyzed 1,3-transposition of allylic alcohols and Meyer-Schuster rearrangement of propargylic alcohols, Chem. Sci. 2 (2011) 1305-1310.

    20. [20]

      [19] G.D. Tibhe, M. Bedolla-Medrano, C. Cativiela, M. Ordonez, Phenylboronic acid as efficient and eco-friendly catalyst for the one-pot, three-component synthesis of α-aminophosphonates under solvent-free conditions, Synlett 31 (2012) 1931-1936.

    21. [21]

      [20] S.V. Goswami, P.B. Thorat, S.R. Bhusare, A facile one-pot synthesis of dicycloalkenopyridines at ambient temperature conditions, Tetrahedron Lett. 53 (2012) 6771-6774.

    22. [22]

      [21] S.V. Goswami, P.B. Thorat, S.R. Bhusare, An efficient one-pot multi-component synthesis of highly functionalized piperidines, Heterocycl. Commun. 18 (2012) 245-248.

    23. [23]

      [22] R.N. Adude, R.M. Tigote, S.V. Goswami, R.S. Bhusare, 3-Nitrophenylboronic acidcatalyzed efficient one-pot synthesis of 1,4-dihydropyridines and polyhydroquinolines, Int. J. Ind. Chem. 3 (2012) 6.

    24. [24]

      [23] S.V. Goswami, P.B. Thorat, A.V. Chakrawar, S.R. Bhusare, A mild and efficient onepot synthesis of β-amino carbonyl compounds via Mannich reaction under ambient temperature condition, Mol. Divers. 17 (2013) 33-40.

  • 加载中
    1. [1]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    2. [2]

      Feiyang Liu Liuhong Song Miaoyu Fu Zhi Zheng Gang Xie Junlong Zhao . Tryptophan’s Employment Journey. University Chemistry, 2024, 39(9): 16-21. doi: 10.12461/PKU.DXHX202404037

    3. [3]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    4. [4]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    5. [5]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    6. [6]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    7. [7]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    8. [8]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    9. [9]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    10. [10]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    11. [11]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    12. [12]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    13. [13]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    15. [15]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    16. [16]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    17. [17]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    18. [18]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    19. [19]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(0)
  • Abstract views(588)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return