Citation: Mir Rasul Mousavi, Nourallah Hazeri, Malek Taher Maghsoodlou, Sajjad Salahi, Sayyed Mostafa Habibi-Khorassani. Entirely green protocol for the synthesis of β-aminoketones using saccharose as a homogenous catalyst[J]. Chinese Chemical Letters, ;2013, 24(05): 411-414. shu

Entirely green protocol for the synthesis of β-aminoketones using saccharose as a homogenous catalyst

  • Corresponding author: Nourallah Hazeri, 
  • Received Date: 11 January 2013
    Available Online: 5 March 2013

  • Saccharose was applied as an efficient and homogenous catalyst for a one-pot, three-component Mannich reaction for the formation of β-aminoketones from aromatic aldehydes, anilines, and acetophenone at ambient temperature in excellent yields. This protocol has the following advantages: mild conditions, high yields, clean reaction profiles, operational simplicity, and environmentally benign and simple work-up procedures.
  • 加载中
    1. [1]

      [1] C. Mannich, W. Krosche, Ueber ein kondensationsprodukt aus formaldehyd, ammoniak und antipyrin, Arch. Pharm. 250 (1912) 647-667.

    2. [2]

      [2] M. Suginome, L. Uehlin, M. Murakami, Aminoboranes as "compatible" iminium ion generators in aminative C-C bond formations, J. Am. Chem. Soc. 126 (2004) 13196-13197.

    3. [3]

      [3] W. Notz, F. Tanaka, S.I. Watanabe, et al., The direct organocatalytic asymmetric Mannich reaction: unmodified aldehydes as nucleophiles, J. Org. Chem. 68 (2003) 9624-9634.

    4. [4]

      [4] R. Muller, H. Goesmann, H. Waldmann, N,N-phthaloylamino acids as chiral auxiliaries in asymmetric Mannich-type reactions, Angew. Chem. Int. Ed. 38 (1999) 184-187.

    5. [5]

      [5] F.A. Davis, J.M. Szewczyk, Synthesis and applications of nonracemic b-amino aldehydes to the asymmetric synthesis of piperdines: (+)-dihydropinidine, Tetrahedron Lett. 39 (1998) 5951-5954.

    6. [6]

      [6] S. Sahoo, T. Joseph, S.B. Halligudi, Mannich reaction in Brönsted acidic ionic liquid: a facile synthesis of β-amino carbonyl compounds, J. Mol. Catal. A: Chem. 244 (2006) 179-182.

    7. [7]

      [7] X.C. Wang, L.J. Zhang, Z. Zhang, Z.J. Quan, PEG-OSO3H as an efficient and recyclable catalyst for the synthesis of β-amino carbonyl compounds via the Mannich reaction in PEG-H2O, Chin. Chem. Lett. 23 (2012) 423-426.

    8. [8]

      [8] Y. Dai, B.D. Li, H.D. Quan, C.X. Lu, CeCl3·7H2O as an efficient catalyst for one-pot synthesis of β-amino ketones by three-component Mannich reaction, Chin. Chem. Lett. 21 (2010) 31-34.

    9. [9]

      [9] V.A. Sukach, N.M. Golovach, V.V. Pirozhenko, et al., Convenient enantioselective synthesis of β-trifluoromethyl-b-aminoketones by organocatalytic asymmetric Mannich reaction of aryl trifluoromethyl ketimines with acetone, Tetrahedron 19 (2008) 761-764.

    10. [10]

      [10] H. Wu, X.M. Chen, Y. Wan, et al., Stereoselective Mannich reactions catalyzed by Tröger's base derivatives in aqueous media, Tetrahedron Lett. 50 (2009) 1062-1065.

    11. [11]

      [11] M.A. Bigdeli, F. Nemati, G.H. Mahdavinia, HClO4-SiO2 catalyzed stereoselective synthesis of β-amino ketones via a direct Mannich-type reaction, Tetrahedron Lett. 48 (2007) 6801-6804.

    12. [12]

      [12] P. Phukan, D. Kataki, P. Chakraborty, Direct synthesis of Cbz-protected b-amino ketones by iodine-catalyzed three-component condensation of aldehydes, ketones and benzyl carbamate, Tetrahedron Lett. 47 (2006) 5523-5525.

    13. [13]

      [13] Y.S. Wu, J. Cai, Z.Y. Hu, G.X. Lin, A new class of metal-free catalysts for direct diastereo-and regioselective Mannich reactions in aqueous media, Tetrahedron Lett. 45 (2004) 8949-8952.

    14. [14]

      [14] Y.Y. Yang, W.G. Shou, Y.G. Wang, Synthesis of β-amino carbonyl compounds via a Zn(OTf)2-catalyzed cascade reaction of anilines with aromatic aldehydes and carbonyl compounds, Tetrahedron 62 (2006) 10079-10086.

    15. [15]

      [15] T.P. Loh, S.B.K.W. Liung, K.L. Tan, L.L. Wei, Three component synthesis of β-amino carbonyl compounds using indium trichloride-catalyzed one-pot Mannich-type reaction in water, Tetrahedron 56 (2000) 3227-3237.

    16. [16]

      [16] U.S. Rai, A.M. Isloor, P. Shetty, et al., Synthesis and biological evaluation of aminoketones, Eur. J. Med. Chem. 45 (2010) 6090-6094.

    17. [17]

      [17] R.I. Kureshy, S. Agrawal, S. Saravanan, et al., Direct Mannich reaction mediated by Fe(Cp)2PF6 under solvent-free conditions, Tetrahedron Lett. 51 (2010) 489-494.

    18. [18]

      [18] C. Mukhopadhyay, A. Datta, R.J. Butcher, Highly efficient one-pot, three-component Mannich reaction catalysed by boric acid and glycerol in water with major‘syn’diastereoselectivity, Tetrahedron Lett. 50 (2009) 4246-4250.

    19. [19]

      [19] M. Kidwai, N.K. Mishra, V. Bansal, et al., Novel one-pot Cu-nanoparticles-catalyzed Mannich reaction, Tetrahedron Lett. 50 (2009) 1355-1358.

    20. [20]

      [20] C.T. Chang, B.S. Liao, S.T. Liu, Mannich-type reactions in a colloidal solution formed by sodium tetrakis(3,5-trifluoromethylphenyl)borate as a catalyst in water, Tetrahedron Lett. 47 (2006) 9257-9259.

    21. [21]

      [21] M. Zahouily, Y. Abrouki, A. Rayadh, et al., Fluorapatite: efficient catalyst for the Michael addition, Tetrahedron Lett. 44 (2003) 2463-2465.

    22. [22]

      [22] C.B. Yue, T.F. Yi, C.B. Zhu, G. Liu, Mannich reaction catalyzed by a novel catalyst under solvent-free conditions, J. Ind. Eng. Chem. 15 (2009) 653-656.

    23. [23]

      [23] N. Saadatjoo, M. Golshekan, S. Shariati, et al., Ultrasound-assisted synthesis of bamino ketones via a Mannich reaction catalyzed by Fe3O4 magnetite nanoparticles as an efficient, recyclable and heterogeneous catalyst, Arab. J. Chem. (2012), http://dx.doi.org/10.1016/j.arabjc.2012.11.018.

    24. [24]

      [24] G.P. Lu, C. Cai, Mannich reactions catalyzed by perchloric acid in Triton X10 aqueous micelles, Catal. Commun. 11 (2010) 745-748.

    25. [25]

      [25] R.K. Sharma, D. Rawat, G. Gaba, Inorganic-organic hybrid silica based tin(Ⅱ) catalyst: synthesis, characterization and application in one-pot three-component Mannich reaction, Catal. Commun. 19 (2012) 31-36.

    26. [26]

      [26] M. Wu, H. Jing, T. Chang, Synthesis of b-amino carbonyl compounds via a Mannich reaction catalyzed by SalenZn complex, Catal. Commun. 8 (2007) 2217-2221.

    27. [27]

      [27] L. Wang, J. Han, J. Sheng, et al., Rare earth perfluorooctanoate [RE(PFO)3] catalyzed one-pot Mannich reaction: three component synthesis of b-amino carbonyl compounds, Catal. Commun. 6 (2005) 201-204.

    28. [28]

      [28] P.A. Grieco (Ed.), Organic Synthesis in Water, 1st ed., Blackie, London, 1998.

    29. [29]

      [29] K. Ramesh, K. Karnakar, G. Satish, Y.V.D. Nageswar, Novel and efficient supramolecular synthesis of pyrroles in the presence of b-cyclodextrin in water, Chin. Chem. Lett. 23 (2012) 1331-1334.

    30. [30]

      [30] M. Kidwai, D. Bhatnagar, N.K. Mishra, V. Bansal, CAN catalyzed synthesis of bamino carbonyl compounds via Mannich reaction in PEG, Catal. Commun. 9 (2008) 2547-2549.

  • 加载中
    1. [1]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    4. [4]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    5. [5]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    6. [6]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    7. [7]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    8. [8]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    9. [9]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    10. [10]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    11. [11]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    12. [12]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    13. [13]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    14. [14]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    15. [15]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    16. [16]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    17. [17]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    18. [18]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    19. [19]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    20. [20]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

Metrics
  • PDF Downloads(0)
  • Abstract views(669)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return