Citation: Wen-Sheng Zhang, Wen-Jing Xu, Fei Zhang, Gui-Rong Qu. Synthesis of symmetrical 1, 3-diynes via tandem reaction of (Z)-arylvinyl bromides in the presence of DBU and CuI[J]. Chinese Chemical Letters, ;2013, 24(05): 407-410. shu

Synthesis of symmetrical 1, 3-diynes via tandem reaction of (Z)-arylvinyl bromides in the presence of DBU and CuI

  • Corresponding author: Wen-Sheng Zhang,  Gui-Rong Qu, 
  • Received Date: 17 December 2012
    Available Online: 27 February 2013

  • Microwave-assisted tandem reaction of (Z)-arylvinyl bromides involving an elimination and homocoupling in the presence of DBU and CuI in DMF affords a variety of symmetrical 1,3-diynes in good to excellent yields. This tandem process, eliminating the need of volatile and savory terminal alkynes, provides an alternative to the conventional homocoupling methods for the synthesis of symmetrical 1,3-diynes.
  • 加载中
    1. [1]

      [1] (a) X.S. Jia, K. Yin, C. Li, J. Li, H.S. Bian, Copper-catalyzed oxidative alkyne homocoupling without palladium, ligands and bases, Green Chem. 13 (2011) 2175-2178;

    2. [2]

      (b) M.L. Lerch, M.K. Harper, D.J. Faulkner, Brominated polyacetylenes from the philippines sponge diplastrella sp, J. Nat. Prod. 66 (2003) 667-670;

    3. [3]

      (c) D. Lechner, M. Stavri, M. Oluwatuyi, R. Perda-Miranda, S. Gibbons, The antistaphylococcal activity of angelica dahurica, Phytochemistry 65 (2004) 331-335;

    4. [4]

      (d) Y.Z. Zhou, H.Y. Ma, H. Chen, et al., New acetylenic glucosides from carthamus tinctorius, Chem. Pharm. Bull. 54 (2006) 1455-1456;

    5. [5]

      (e) M. Ladika, T.E. Fisk, W.W. Wu, S.D. Jons, High-stability liposomes from macrocyclic diyne phospholipids, J. Am. Chem. Soc. 116 (1994) 12093-12094;

    6. [6]

      (f) S.F. Mayer, A. Steinreiber, R.V.A. Orru, K. Faber, Chemoenzymatic asymmetric total syntheses of antitumor agents (3R,9R,10R)-and (3S,9R,10R)-panaxytriol and (R)-and (S)-falcarinol from panax ginseng using an enantioconvergent enzymetriggered cascade reaction, J. Org. Chem. 67 (2002) 9115-9121;

    7. [7]

      (g) G. Zeni, R.B. Panatieri, E. Lissner, et al., Synthesis of polyacetylenic acids isolated from heisteria acuminata, Org. Lett. 3 (2001) 819-821;

    8. [8]

      (h) A. Stüts, Allylamine derivatives—a new class of active substances in antifungal chemotherapy, Angew. Chem. Int. Ed. Engl. 26 (1987) 320-328;

    9. [9]

      (i) Q. Yang, L.C. Li, S.H. Li, D.M. Yue, C.H. Xu, Synthesis and photophysical properties of poly(aryleneethnylene)s containing dibenzosilole unit, Chin. Chem. Lett. 23 (2012) 1303-1306.

    10. [10]

      [2] M. Gholami, R.R. Tykwinski, Oligomeric and polymeric systems with a crossconjugated π-framework, Chem. Rev. 106 (2006) 4997-5027.

    11. [11]

      [3] (a) P.N.W. Baxter, R. Dali-Youcef, Nitrogen heterocyclic carbon-rich materials: synthesis and spectroscopic properties of dehydropyridoannulene macrocycles, J. Org. Chem. 70 (2005) 4935-4953;

    12. [12]

      (b) J.A. Marsden, M.M. Haley, Carbon networks based on dehydrobenzoannulenes. 5. Extension of two-dimensional conjugation in graphdiyne nanoarchitectures, J. Org. Chem. 70 (2005) 10213-10226.

    13. [13]

      [4] J.D. Crowley, S.M. Goldup, A.L. Lee, D.A. Leigh, R.T. McBurney, Active metal template synthesis of rotaxanes, catenanes and molecular shuttles, Chem. Soc. Rev. 38 (2009) 1530-1541.

    14. [14]

      [5] (a) P. Siemsen, R.C. Livingston, F. Diederich, Acetylenic coupling: a powerful tool in molecular construction, Angew. Chem. Int. Ed. 39 (2000) 2632-2657;

    15. [15]

      (b) M.M. Haley, Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures, Pure Appl. Chem. 80 (2008) 519-532;

    16. [16]

      (c) A.S. Hay, Oxidative coupling of acetylenes, J. Org. Chem. 27 (1962) 3320-3321;

    17. [17]

      (d) E. Valenti, M.A. Pericas, F. Serratosa, 1,4-Dialkoxy-1,3-butadiynes, J. Am. Chem. Soc. 112 (1990) 7405-7746;

    18. [18]

      (e) Y. Liao, R. Fathi, Z. Yang, Aliphatic acetylenic homocoupling catalyzed by a novel combination of AgOTs-CuCl2-TMEDA and its application for the solid-phase synthesis of bis-benzo[b]furan-linked 1,3-diynes, Org. Lett. 5 (2003) 909-912;

    19. [19]

      (f) T. Oishi, T. Katayama, K. Yamaguchi, N. Mizuno, Heterogeneously catalyzed efficient alkyne-alkyne homocoupling by supported copper hydroxide on titanium oxide, Chem. Eur. J. 15 (2009) 7539-7542;

    20. [20]

      (g) S. Adimurthy, C.C. Malakar, U. Beifuss, Influence of bases and ligands on the outcome of the Cu(i)-catalyzed oxidative homocoupling of terminal alkynes to 1,4-disubstituted 1,3-diynes using oxygen as an oxidant, J. Org. Chem. 74 (2009) 5648-5651;

    21. [21]

      (h) G. Eglington, R. Galbraith, Macrocyclic acetylenic compounds. Part I. Cyclotetradeca-1,3-diyne and related compounds, J. Chem. Soc. (1959) 889-896;

    22. [22]

      (i) K. Sonogashira, Y. Tohda, N. Hagihara, A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines, Tetrahedron Lett. 50 (1975) 4467-4470;

    23. [23]

      (j) J. Yan, J. Wu, H. Jin, An efficient synthesis of diynes using (diacetoxyiodo)-benzene, J. Organomet. Chem. 692 (2007) 3636-3639;

    24. [24]

      (k) Q. Zheng, R. Hua, Y. Wan, An alternative CuCl-piperidine-catalyzed oxidative homocoupling of terminal alkynes affording 1,3-diynes in air, Appl. Organomet. Chem. 24 (2010) 314-316;

    25. [25]

      (l) P. Kuhn, A. Alix, M. Kumarraja, B. Louis, P. Pale, J. Sommer, Copper-zeolites as catalysts for the coupling of terminal alkynes: an efficient synthesis of diynes, Eur. J. Org. Chem. (2009) 423-429;

    26. [26]

      (m) A.L.K. Shi Shun, R.R. Tykwinski, Synthesis of naturally occurring polyynes, Angew. Chem. Int. Ed. 45 (2006) 1034-1057;

    27. [27]

      (n) Z. Chen, H. Jiang, A. Wang, S. Yang, Transition-metal-free homocoupling of 1-haloalkynes: a facile synthesis of symmetrical 1,3-diynes, J. Org. Chem. 75 (2010) 6700-6703;

    28. [28]

      (o) H.A. Stefani, A.S. Guarezemini, R. Cella, Homocoupling reactions of alkynes, alkenes and alkyl compounds, Tetrahedron 66 (2010) 7871-7918;

    29. [29]

      (p) K. Kamata, S. Yamaguchi, M. Kotani, K. Yamaguchi, N. Mizuno, Efficient oxidative alkyne homocoupling catalyzed by a monomeric dicopper-substituted silicotungstate, Angew. Chem. Int. Ed. 47 (2008) 2407-2410;

    30. [30]

      (q) J.D. Crowley, S.M. Goldup, N.D. Gowans, et al., An unusual nickel-coppermediated alkyne homocoupling reaction for the active-template synthesis of[2]rotaxanes, J. Am. Chem. Soc. 132 (2010) 6243-6248;

    31. [31]

      (r) K. Homo-Balaraman, V. Kesavan, Efficient copper(ii) acetate catalyzed homoand heterocoupling of terminal alkynes at ambient conditions, Synthesis 20 (2010) 3461-3466;

    32. [32]

      (s) A. Coste, F. Couty, G. Evano, Copper-mediated homocoupling of vinyl dibromides to symmetrical diynes, Synthesis 9 (2010) 1500-1504;

    33. [33]

      (t) S.L. Zhang, X.Y. Liu, T.Q. Wang, An efficient copper-catalyzed homocoupling of terminal alkynes to give symmetrical 1,4-disubstituted 1,3-diynes, Adv. Synth. Catal. 353 (2011) 1463-1466;

    34. [34]

      (u) S.N. Chen, W.Y. Wu, F.Y. Tsai, Homocoupling reaction of terminal alkynes catalyzed by a reusable cationic 2,2'-bipyridyl palladium(Ⅱ)/CuI system in water, Green Chem. 11 (2009) 269-274;

    35. [35]

      (v) K. Yin, C.J. Li, J. Li, X.S. Jia, CuCl-catalyzed green oxidative alkyne homocoupling without palladium, ligands and bases, Green Chem. 13 (2011) 591-593.

    36. [36]

      [6] C. Glaser, Beiträge zur Kenntnis des Acetenylbenzols, Ber. Dtsch. Chem. Ges. 2 (1869) 422-424.

    37. [37]

      [7] (a) C.X. Kuang, H. Senboku, M. Tokuda, Convenient and stereoselective synthesis of (Z)-1-bromo-1-alkenes by microwave-induced reaction, Tetrahedron Lett. 42 (2001) 3893-3896;

    38. [38]

      (b) W.S. Zhang, C.X. Kuang, Q. Yang, Stereoselective synthesis of (Z)-4-(2-bromovinyl) benzenesulfonyl azide and its synthetic utility for the transformation to (Z)-N-[4-(2-bromovinyl)benzenesulfonyl]imidates, Chin. J. Chem. 27 (2009) 1727-1732;

    39. [39]

      (c) W.S. Zhang, C.X. Kuang, Q. Yang, One-pot synthesis of (Z)-4-(2-bromovinyl) arylsulfonamides by microwave-induced simultaneous debrominative decarboxylation and sulfamation of anti-3-(4-chlorosulfonylbenzyl)-2,3-dibromopropanoic acid, Chin. Chem. Lett. 20 (2009) 48-51.

    40. [40]

      [8] P. Espinet, A.M. Echavarren, The mechanisms of the stille reaction, Angew. Chem. Int. Ed. 43 (2004) 4704-4734, and references cited therein.

    41. [41]

      [9] N. Miyaura, A. Suzuki, Palladium-catalyzed cross-coupling reactions of organoboron compounds, Chem. Rev. 95 (1995) 2457-2483.

    42. [42]

      [10] E. Negishi, L. Anastasia, Palladium-catalyzed alkynylation, Chem. Rev. 103 (2003) 1979-2018.

    43. [43]

      [11] L. Jiang, G.E. Job, A. Klapars, S.L. Buchwald, Copper-catalyzed coupling of amides and carbamates with vinyl halides, Org. Lett. 5 (2003) 3667-3669.

    44. [44]

      [12] Q. Liao, Y.X. Wang, L.Y. Zhang, C.J. Xi, A general copper-catalyzed coupling of azoles with vinyl bromides, J. Org. Chem. 74 (2009) 6371-6373.

    45. [45]

      [13] (a) C.X. Kuang, H. Senboku, M. Tokuda, A one-pot synthesis of terminal alkynes from anti-3-aryl-2,3-dibromopropanoic acids under microwave irradiation, Chem. Lett. 34 (2005) 28-29;

    46. [46]

      (b) W.S. Zhang, C.X. Kuang, Q. Yang, Efficient one-pot synthesis of 4-ethynylbenzenesulfonamides, Z. Naturforsch. B 64b (2009) 292-296;

    47. [47]

      (c) Y.B. Jiang, C.X. Kuang, Synthesis of 1,2,3-triazole derivatives, Prog. Chem. 24 (2012) 1983-1994.

    48. [48]

      [14] J. Hui, C.X. Kuang, Ligand-free copper-catalyzed synthesis of symmetrical diynes from 1,1-dibromo-1-alkenes, J. Chin. Chem. 29 (2011) 592-594.

    49. [49]

      [15] J.C. Yan, L. Wang, First example of transition-metal-free glaser-type coupling reaction, Synth. Commun. 35 (2005) 2333-2338.

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    3. [3]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    4. [4]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    5. [5]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    6. [6]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    7. [7]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    8. [8]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    9. [9]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    10. [10]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    11. [11]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    12. [12]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    13. [13]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    14. [14]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    15. [15]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    16. [16]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    17. [17]

      Kai AnQinglong QiaoLoveleshSyed Ali Abbas AbediXiaogang LiuZhaochao Xu . "Superimposed" spectral characteristics of fluorophores arising from cross-conjugation hybridization. Chinese Chemical Letters, 2025, 36(1): 109786-. doi: 10.1016/j.cclet.2024.109786

    18. [18]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    19. [19]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    20. [20]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

Metrics
  • PDF Downloads(0)
  • Abstract views(790)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return