Citation:
Bing Wang, Chi Ma, Zuo-Chun Xiong, Cheng-Dong Xiong, Quan-Hua Zhou, Dong-Liang Chen. Synthesis of novel copolymer:Poly(p-dioxanone-co-L-phenylalanine)[J]. Chinese Chemical Letters,
;2013, 24(05): 392-396.
-
In order to expand the application of poly(p-dioxanone) or PPDO in biomedical area, a series of novel copolymers were synthesized successfully by one-step, melted copolymerization of p-dioxanone (PDO) and L-phenylalanine N-carboxyanhydride (L-Phe-NCA) monomers. With the in-feedmolar ratio of L-Phe-NCA/PDO equal to 1/20, the conversions of the two kinds of monomers were calculated from 1H NMR. The average molecular weight and polydispersity of the copolymer increase with the increasing reaction time and catalyst concentration. However, the conversions of the two kinds of monomers did not change with the reaction conditions. A three-step mechanism is presented and proved by high resolution 1H NMR and IR spectrums.
-
Keywords:
- Copolymer,
- p-Dioxanone,
- L-Phenylalanine,
- Mechanism
-
-
-
[1]
[1] K.K. Yang, X.L. Wang, Y.Z. Wang, et al., Poly (p-dioxanone) and its copolymers, J. Macromol. Sci. Polym. Rev. 42 (2002) 373-398.
-
[2]
[2] R.B. Cady, J.A. Siegel, G. Mathien, et al., Physeal response to absorbable polydioxanone bone pins in growing rabbits, J. Biomed. Mater. Res. 48 (1999) 211-215.
-
[3]
[3] H.P. Greisler, D. Petsikas, T.M. Lam, et al., Kinetics of cell proliferation as a function of vascular graft material, J. Biomed. Mater. Res. 27 (1999) 955-961.
-
[4]
[4] N. Saito, T. Okada, H. Horiuchi, et al., A biodegradable polymer as a cytokine delivery system for inducing bone formation, Nat. Biotechnol. 19 (2001) 332-335.
-
[5]
[5] H. Wang, J.H. Dong, K.Y. Qiu, et al., Synthesis of poly(1,4-dioxan-2-one-co-trimethylenecarbonate) for application in drug delivery systems, J. Polym. Sci. Polym. Chem. 36 (1998) 1301-1307.
-
[6]
[6] M. Vert, Aliphatic polyesters: great degradable polymers that cannot do everything, Biomacromolecules 6 (2004) 538-546.
-
[7]
[7] K.K. Yang, L. Zheng, Y.Z. Wang, ABA triblock copolymers from poly(p-dioxanone) and poly(ethylene glycol), J. Appl. Polym. Sci. 102 (2006) 1092-1097.
-
[8]
[8] K.C. Remant Bahadur, S. Aryal, S. Raj Bhattarai, et al., Amphiphilic triblock copolymer based on poly(p-dioxanone) and poly(ethylene glycol): synthesis, characterization, and aqueous dispersion, J. Appl. Polym. Sci. 103 (2007) 2695-2702.
-
[9]
[9] X.L. Wang, Y.R. Mou, S.C. Chen, et al., A water-soluble PPDO/PEG alternating multiblock copolymer: synthesis, characterization, and its gel-sol transition behavior, Eur. Polym. J. 45 (2009) 1190-1197.
-
[10]
[10] G. Wu, S.C. Chen, Q. Zhan, et al., Well-defined amphiphilic poly(p-dioxanone)-grafted poly(vinyl alcohol) copolymers: synthesis and micellization, J. Polym. Sci. Part A: Polym. Chem. 48 (2010) 4811-4822.
-
[11]
[11] R. Chen, J.Y. Hao, C.D. Xiong, et al., Rapid synthesis of biodegradable poly(epsiloncaprolactone-co-p-dioxanone) random copolymers under microwave irradiation, Chin. Chem. Lett. 21 (2010) 249-252.
-
[12]
[12] H.Z. Zhao, J.Y. Hao, C.D. Xiong, et al., Different crystallinity of poly(D,L-lactide-cop-dioxanone) copolymers acquired by control of chain microstructure, Chin. Chem. Lett. 20 (2009) 1506-1509.
-
[13]
[13] H. Sun, F.H. Meng, A.A. Dias, et al., a-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications, Biomacromolecules 12 (2001) 1937-1955.
-
[14]
[14] Y.D. Li, S.C. Chen, J.B. Zeng, et al., Novel biodegradable poly(1,4-dioxan-2-one) grafted soy protein copolymer: synthesis and characterization, Ind. Eng. Chem. Res. 47 (2008) 8233-8238.
-
[15]
[15] Z.B. Li, G.S. Zhao, L-phenylalanine specifically inhibited the proliferation of myocardial fibroblast in spontaneously hypertensive rat, Chin. J. Hypertens. 7 (1999) 163-165.
-
[16]
[16] P.J. Gao, D.L. Zhu, Y.M. Zhao, L-phenylalanine and smooth muscle cell proliferation from and WKY rats, Acta Phys. Sin. 50 (1998) 401-408.
-
[17]
[17] W.H. Daly, P. Drew, The preparation of N-carboxyanhydrides of [alpha]-amino acids using bis(trichloromethyl) carbonate, Tetrahedron Lett. 29 (1988) 5859-5862.
-
[18]
[18] T.J. Deming, Polypeptide materials: new synthetic methods and applications, Adv. Mater. 9 (1997) 299-311.
-
[1]
-
-
-
[1]
Jia Fu , Shilong Zhang , Lirong Liang , Chunyu Du , Zhenqiang Ye , Guangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804
-
[2]
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
-
[3]
Wendi Dou , Guangying Wan , Tiefeng Liu , Lin Han , Wu Zhang , Chuang Sun , Rensheng Song , Jianhui Zheng , Yujing Liu , Xinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389
-
[4]
Xiaoning Li , Quanyu Shi , Meng Li , Ningxin Song , Yumeng Xiao , Huining Xiao , Tony D. James , Lei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021
-
[5]
Shaojie Deng , Peihua Ma , Qinghong Bai , Xin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878
-
[6]
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
-
[7]
Ming-Yi Sun , Lu Zhang , Ya Li , Chong-Chen Wang , Peng Wang , Xueying Ren , Xiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl− ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035
-
[8]
Tong Zhou , Liyi Xie , Chuyu Liu , Xiyan Zheng , Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048
-
[9]
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813
-
[10]
Qian Wang , Ting Gao , Xiwen Lu , Hangchao Wang , Minggui Xu , Longtao Ren , Zheng Chang , Wen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887
-
[11]
Bharathi Natarajan , Palanisamy Kannan , Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349
-
[12]
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049
-
[13]
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
-
[14]
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
-
[15]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[16]
Wenzhong Zhang , Zirui Yan , Lingcheng Chen , Yi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582
-
[17]
Hai-Ling Wang , Zhong-Hong Zhu , Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372
-
[18]
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
-
[19]
Chunqing Ou , Meijia Xiao , Xinyue Zheng , Xianzhou Huang , Suleixin Yang , Yingying Leng , Xiaowei Liu , Xiuqi Liang , Linjiang Song , Yanjie You , Shaohua Yao , Changyang Gong . Programmable double-unlock nanocomplex self-supplies phenylalanine ammonia-lyase for precise phenylalanine deprivation of tumors. Chinese Chemical Letters, 2024, 35(8): 109275-. doi: 10.1016/j.cclet.2023.109275
-
[20]
Yubang Li , Xixi Hu , Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(586)
- HTML views(4)