Citation: Jun-Ming Yi, Xin-Long Ni, Xin Xiao, Li-Bing Lu, Sai-Feng Xue, Qian-Jiang Zhu, Zhu Tao. Complexation of sym-bis(benzimidazole)-2, 2’-ethylene salts with cucurbit[6]uril derivatives:A potential axle molecule for pseudorotaxanes[J]. Chinese Chemical Letters, ;2013, 24(05): 362-366. shu

Complexation of sym-bis(benzimidazole)-2, 2’-ethylene salts with cucurbit[6]uril derivatives:A potential axle molecule for pseudorotaxanes

  • Corresponding author: Xin-Long Ni,  Zhu Tao, 
  • Received Date: 23 January 2013
    Available Online: 4 March 2013

  • Sym-bis(benzimidazole)-2,2'-ethylene cations act as a new axle template for threading cucurbit[6]uril derivatives on, forming [2]pseudorotaxane and [3]pseudorotaxane. These new complexes have been studied using 1H NMR, UV-vis absorption spectroscopy and X-ray analysis. Changes in the 1H NMR spectra indicate that the two types of pseudorotaxane can be formed by varying the host concentration. UV-vis absorption titration experiments at different pH values demonstrate that interesting pKa shifts of the bis-benzimidazole derivatives can be induced by the host-guest complexation. The associated constants were calculated to be 2.81×104 L/mol and 9.06×106 L/mol for the [2]pseudorotaxanes and [3]pseudorotaxanes, respectively. Furthermore, X-ray diffraction studies of the solid state structures provide unequivocal proof of the host concentration dependent pseudorotaxane, which is strongly in line with the evidences in solution.
  • 加载中
    1. [1]

      [1] (a) J.P. Sauvage, C. Dietrich-Buchecker (Eds.), Catenanes, Rotaxanes and Knots, Wiley-VCH, Weinheim, 1999;

    2. [2]

      (b) S. Li, M. Liu, B. Zheng, et al., Taco complex templated syntheses of a cryptand/paraquat [2]rotaxane and a [2]catenane by olefin metathesis, Org. Lett. 11 (2009) 3350-3353.

    3. [3]

      [2] (a) V. Balzani, M. Venturi, A. Credi, Molecular devices and machines -concepts and perspectives for the nano world, 2nd ed., Wiley-VCH, Weinheim, 2008;

    4. [4]

      (b) R.S. Forgan, J.P. Sauvage, J.F. Stoddart, Chemical topology: complex molecular knots, links, and entanglements, Chem. Rev. 111 (2011) 5434-5464;

    5. [5]

      (c) B. Zheng, F. Wang, S. Dong, F. Huang, Supramolecular polymers constructed by crown ether-based molecular recognition, Chem. Soc. Rev. 41 (2012) 1621-1636.

    6. [6]

      [3] (a) A.I. Day, A.P. Arnold, Aust. Patent WO 0068232, 2000, 8. (b) J. Kim, I.S. Jung, S.Y. Kim, et al., New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8), J. Am. Chem. Soc. 122 (2000) 540-541.

    7. [7]

      [4] (a) K. Kim, Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies, Chem. Soc. Rev. 31 (2002) 96-107;

    8. [8]

      (b) J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, The cucurbit[n]uril family, Angew. Chem. Int. Ed. 44 (2005) 4844-4870;

    9. [9]

      (c) A.C. Bhasikuttan, H. Pal, J. Mohanty, Cucurbit[n]uril based supramolecular assemblies: tunable physico-chemical properties and their prospects, Chem. Commun. 47 (2011) 9959-9971;

    10. [10]

      (d) R.N. Dsouza, U. Pischel, W.M. Nau, Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution, Chem. Rev. 111 (2011) 7941-7980.

    11. [11]

      [5] (a) A. Singh, W.T. Yip, R.L. Halterman, Fluorescence-on response via CB7 binding to viologen -dye pseudorotaxanes, Org. Lett. 14 (2012) 4046-4049;

    12. [12]

      (b) X. Ling, E. Masson, Cucurbituril slippage: cations as supramolecular lubricants, Org. Lett. 14 (2012) 4866-4869;

    13. [13]

      (c) A.E. Kaifer, W. Li, S. Silvi, V. Sindelar, Pronounced pH effects on the kinetics of cucurbit[7]uril-based pseudorotaxane formation and dissociation, Chem. Commun. 48 (2012) 6693-6695;

    14. [14]

      (c) V. Kolman, M.S.A. Khan, M. Babinský, R. Marek, V. Sindelar, Supramolecular shuttle based on inclusion complex between cucurbit[6]uril and bispyridinium ethylene, Org. Lett. 13 (2011) 6148-6151;

    15. [15]

      (d) Z.J. Zhang, H.Y. Zhang, L. Chen, Y. Liu, Interconversion between [5]pseudorotaxane and [3]pseudorotaxane by pasting/detaching two axle molecules, J. Org. Chem. 76 (2011) 8270-8276;

    16. [16]

      (e) I.W. Wyman, D.H. Macartney, Host-guest complexes and pseudorotaxanes of cucurbit[7]uril with acetylcholinesterase inhibitors, J. Org. Chem. 74 (2009) 8031-8038;

    17. [17]

      (f) G. Celtek, M. Artar, O.A. Scherman, D. Tuncel, Sequence-specific self-sorting of the binding sites of a ditopic guest by cucurbituril homologues and subsequent formation of a hetero[4]pseudorotaxane, Chem. Eur. J. 15 (2009) 10360-10363;

    18. [18]

      (g) T. Ooya, D. Inoue, H.S. Choi, et al., pH-Responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl b-cyclodextrin and cucurbit[7]uril, Org. Lett. 8 (2006) 3159-3162;

    19. [19]

      (h) D. Sobransingh, A.E. Kaifer, Electrochemically switchable cucurbit[7]urilbased pseudorotaxanes, Org. Lett. 8 (2006) 3247-3250;

    20. [20]

      (i) K. Moon, A.E. Kaifer, Modes of binding interaction between viologen guests and the cucurbit[7]uril host, Org. Lett. 6 (2004) 185-188;

    21. [21]

      (j) S. Li, M. Liu, J. Zhang, et al., Preparation of bis(m-phenylene)-32-crown-10-based cryptand/bisparaquat [3]rotaxanes with high efficiency, Eur. J. Org. Chem. (2008) 6128-6133.

    22. [22]

      [6] (a) V. İbrahimova, S. Ekiz, Ö. Gezici, D. Tuncel, Facile synthesis of cross-linked patchy fluorescent conjugated polymer nanoparticles by click reactions, Polym. Chem. 2 (2011) 2818-2824;

    23. [23]

      (b) V. Ramalingam, A.R. Urbach, Cucurbit[8]uril rotaxanes, Org. Lett. 13 (2011) 4898-4901;

    24. [24]

      (c) V. Sindelar, K. Moon, A.E. Kaifer, Binding selectivity of cucurbit[7]uril: bis(-pyridinium)-1, 4-xylylene versus 4,40-bipyridinium guest sites, Org. Lett. 6 (2004) 2665-2668;

    25. [25]

      (d) C. Ke, R.A. Smaldone, T. Kikuchi, et al., Quantitative emergence of hetero[4]-rotaxanes by template-directed click chemistry, Angew. Chem. Int. Ed. 52 (2013) 381-387.

    26. [26]

      [7] C. Márquez, R.R. Hudgins, W.M. Nau, Mechanism of host-guest complexation by cucurbituril, J. Am. Chem. Soc. 126 (2004) 5806-5816.

    27. [27]

      [8] J. Zhao, H.J. Kim, J. Oh, et al., Cucurbit[n]uril derivatives soluble in water and organic solvents, Angew. Chem. Int. Ed. 40 (2001) 4233-4235.

    28. [28]

      [9] (a) S. Sanjita, K. Mantosh, E.K. Sinha, Facile purification of rare cucurbiturils by affinity chromatography, Org. Lett. 6 (2004) 1225-1228;

    29. [29]

      (b) L.B. Lu, Y.Q. Zhang, Q.J. Zhu, S.F. Xue, Z. Tao, Synthesis and X-ray structure of the inclusion complex of dodecamethylcucurbit[6]uril with 1, 4-dihydroxybenzene, Molecules 12 (2007) 716-722;

    30. [30]

      (c) Y.J. Zhao, S.F. Xue, Q.J. Zhu, et al., Synthesis of a symmetrical tetrasub-stituted cucurbit[6]uril and its host-guest inclusion complex with 2, 2'-bipyridine, Chin. Sci. Bull. 49 (2004) 1111-1116;

    31. [31]

      (d) L.B. Lu, D.H. Yu, Y.Q. Zhang, et al., Supramolecular assemblies based on some new methyl-substituted cucurbit[5]urils through hydrogen bonding, J. Mol. Struct. 885 (2008) 70-75;

    32. [32]

      (e) D.H. Yu, X.L. Ni, Y.Q. Zhang, et al., Structures of supramolecular assemblies formed by some partial substituted cucurbiturils and some metal ion complexes, J. Mol. Struct. 882 (2008) 128-133;

    33. [33]

      (f) X.L. Ni, Y.Q. Zhang, Q.J. Zhu, S.F. Xue, Z. Tao, Crystal structures of host-guest complexes of meta-tricyclohexyl cucurbit[6]uril with small organic molecules, J. Mol. Struct. 876 (2008) 322-327.

    34. [34]

      [10] (a) C. Mukhopadhyay, S. Ghosh, M. Ann, Schmiedekamp, Unraveling the molecular recognition of "three methylene spacer" bis(benzimidazolium) moiety by dibenzo-24-crown-8: pseudorotaxanes under study, Org. Biomol. Chem. 10 (2012) 1434-1439;

    35. [35]

      (b) K. Zhu, V.N. Vukotic, N. Noujeim, S.J. Loeb, Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles, Chem. Sci. 3 (2012) 3265-3271;

    36. [36]

      (c) L. Li, G.J. Clarkson, New bis(benzimidazole) cations for threading through dibenzo-24-crown-8, Org. Lett. 9 (2007) 497-500;

    37. [37]

      (d) D. Castillo, P. Astudillo, J. Mares, F.J. Gonz'alez, A. Vela, J. Tiburcio, Chemically controlled self-assembly of [2]pseudorotaxanes based on 1, 2-bis(benzimidazolium) ethane cations and 24-crown-8 macrocycles, Org. Biomol. Chem. 5 (2007) 2252-2256.

    38. [38]

      [11] (a) Y.J. Zhao, D.P. Buck, D.L. Morris, M.H. Pourgholami, A.I. Day, J.G. Collins, Solubilisation and cytotoxicity of albendazole encapsulated in cucurbit[n]uril, Org. Biomol. Chem. 6 (2008) 4509-4515;

    39. [39]

      (b) A.L. Koner, I. Ghosh, N. Saleh, W.M. Nau, Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril, Can. J. Chem. 89 (2011) 139-147.

    40. [40]

      [12] M.D. Pluth, R.G. Bergman, K.N. Raymond, Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis, Science 316 (2007) 85-88.

    41. [41]

      [13] (a) J. Mohanty, A.C. Bhasikuttan, W.M. Nau, H. Pal, Host-guest complexation of neutral red with macrocyclic host molecules: contrasting pKa shifts and binding affinities for cucurbit[7]uril and b-cyclodextrin, J. Phys. Chem. B. 110 (2006) 5132-5138;

    42. [42]

      (b) A.L. Koner, W.M. Nau, Cucurbituril encapsulation of fluorescent dyes, Supramol. Chem. 19 (2007) 55-56;

    43. [43]

      (c) N. Saleh, A.L. Koner, W.M. Nau, Activation and stabilization of drugs by supramolecular pKa shifts: drug-delivery applications tailored for cucurbiturils, Angew. Chem. Int. Ed. 47 (2008) 5398-5401;

    44. [44]

      (d) A. Praetorius, D.M. Bailey, T. Schwarzlose, W.M. Nau, Design of a fluorescent dye for indicator displacement from cucurbiturils: a macrocycle-responsive fluorescent switch operating through a pKa shift, Org. Lett. 10 (2008) 4089-4092;

    45. [45]

      (e) J. Wu, L. Isaacs, Cucurbit[7]uril complexation drives thermal trans-cis-azobenzene isomerization and enables colorimetric amine detection, Chem. Eur. J. 15 (2009) 11675-11680;

    46. [46]

      (f) I.W. Wyman, D.H. Macartney, Cucurbit[7]uril host-guest complexes of cholines and phosphonium cholines in aqueous solution, Org. Biomol. Chem. 8 (2010) 253-260.

    47. [47]

      [14] K.S. Rogers, C.C. Clayton, Effects of pH on benzimidazole fluorescence, Anal. Biochem. 48 (1972) 199-201.

    48. [48]

      [15] Y.D. Pischel, P. Uzunova, W. Remon, M. Nau, Supramolecular logic with macrocyclic input and competitive reset, Chem. Commun. (2010) 2635-2637.

    49. [49]

      [16] W.J. Chen, J.P. Zeng, Y.Q. Zhang, et al., Crystal structures of two partially methylsubstituted cucurbit[n]urils, Chin. J. Inorg. Chem. 26 (2010) 2018-2024.

    50. [50]

      [17] (a) A.D. MacKerell Jr., M.S. Sommer, M. Karplus, pH Dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 20GMP/30GMP binding to ribonuclease T1 and implications for catalysis, J. Mol. Biol. 247 (1995) 774-807;

    51. [51]

      (b) N.C. Ha, M.S. Kim, W. Lee, K.Y. Choi, B.H. Oh, Detection of large pKa perturbations of an inhibitor and a catalytic group at an enzyme active site, a mechanistic basis for catalytic power of many enzymes, J. Biol. Chem. 275 (2000) 41100-41106.

  • 加载中
    1. [1]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    2. [2]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    3. [3]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    4. [4]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    7. [7]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    8. [8]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    9. [9]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    10. [10]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    11. [11]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    12. [12]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    13. [13]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    14. [14]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    15. [15]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    16. [16]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    17. [17]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    18. [18]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    19. [19]

      Zhuwen WeiJiayan ChenCongzhen XieYang ChenShifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677

    20. [20]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

Metrics
  • PDF Downloads(0)
  • Abstract views(657)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return