Citation: Jun-Ming Yi, Xin-Long Ni, Xin Xiao, Li-Bing Lu, Sai-Feng Xue, Qian-Jiang Zhu, Zhu Tao. Complexation of sym-bis(benzimidazole)-2, 2’-ethylene salts with cucurbit[6]uril derivatives:A potential axle molecule for pseudorotaxanes[J]. Chinese Chemical Letters, ;2013, 24(05): 362-366.
-
Sym-bis(benzimidazole)-2,2'-ethylene cations act as a new axle template for threading cucurbit[6]uril derivatives on, forming [2]pseudorotaxane and [3]pseudorotaxane. These new complexes have been studied using 1H NMR, UV-vis absorption spectroscopy and X-ray analysis. Changes in the 1H NMR spectra indicate that the two types of pseudorotaxane can be formed by varying the host concentration. UV-vis absorption titration experiments at different pH values demonstrate that interesting pKa shifts of the bis-benzimidazole derivatives can be induced by the host-guest complexation. The associated constants were calculated to be 2.81×104 L/mol and 9.06×106 L/mol for the [2]pseudorotaxanes and [3]pseudorotaxanes, respectively. Furthermore, X-ray diffraction studies of the solid state structures provide unequivocal proof of the host concentration dependent pseudorotaxane, which is strongly in line with the evidences in solution.
-
-
[1]
[1] (a) J.P. Sauvage, C. Dietrich-Buchecker (Eds.), Catenanes, Rotaxanes and Knots, Wiley-VCH, Weinheim, 1999;
-
[2]
(b) S. Li, M. Liu, B. Zheng, et al., Taco complex templated syntheses of a cryptand/paraquat [2]rotaxane and a [2]catenane by olefin metathesis, Org. Lett. 11 (2009) 3350-3353.
-
[3]
[2] (a) V. Balzani, M. Venturi, A. Credi, Molecular devices and machines -concepts and perspectives for the nano world, 2nd ed., Wiley-VCH, Weinheim, 2008;
-
[4]
(b) R.S. Forgan, J.P. Sauvage, J.F. Stoddart, Chemical topology: complex molecular knots, links, and entanglements, Chem. Rev. 111 (2011) 5434-5464;
-
[5]
(c) B. Zheng, F. Wang, S. Dong, F. Huang, Supramolecular polymers constructed by crown ether-based molecular recognition, Chem. Soc. Rev. 41 (2012) 1621-1636.
-
[6]
[3] (a) A.I. Day, A.P. Arnold, Aust. Patent WO 0068232, 2000, 8. (b) J. Kim, I.S. Jung, S.Y. Kim, et al., New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8), J. Am. Chem. Soc. 122 (2000) 540-541.
-
[7]
[4] (a) K. Kim, Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies, Chem. Soc. Rev. 31 (2002) 96-107;
-
[8]
(b) J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, The cucurbit[n]uril family, Angew. Chem. Int. Ed. 44 (2005) 4844-4870;
-
[9]
(c) A.C. Bhasikuttan, H. Pal, J. Mohanty, Cucurbit[n]uril based supramolecular assemblies: tunable physico-chemical properties and their prospects, Chem. Commun. 47 (2011) 9959-9971;
-
[10]
(d) R.N. Dsouza, U. Pischel, W.M. Nau, Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution, Chem. Rev. 111 (2011) 7941-7980.
-
[11]
[5] (a) A. Singh, W.T. Yip, R.L. Halterman, Fluorescence-on response via CB7 binding to viologen -dye pseudorotaxanes, Org. Lett. 14 (2012) 4046-4049;
-
[12]
(b) X. Ling, E. Masson, Cucurbituril slippage: cations as supramolecular lubricants, Org. Lett. 14 (2012) 4866-4869;
-
[13]
(c) A.E. Kaifer, W. Li, S. Silvi, V. Sindelar, Pronounced pH effects on the kinetics of cucurbit[7]uril-based pseudorotaxane formation and dissociation, Chem. Commun. 48 (2012) 6693-6695;
-
[14]
(c) V. Kolman, M.S.A. Khan, M. Babinský, R. Marek, V. Sindelar, Supramolecular shuttle based on inclusion complex between cucurbit[6]uril and bispyridinium ethylene, Org. Lett. 13 (2011) 6148-6151;
-
[15]
(d) Z.J. Zhang, H.Y. Zhang, L. Chen, Y. Liu, Interconversion between [5]pseudorotaxane and [3]pseudorotaxane by pasting/detaching two axle molecules, J. Org. Chem. 76 (2011) 8270-8276;
-
[16]
(e) I.W. Wyman, D.H. Macartney, Host-guest complexes and pseudorotaxanes of cucurbit[7]uril with acetylcholinesterase inhibitors, J. Org. Chem. 74 (2009) 8031-8038;
-
[17]
(f) G. Celtek, M. Artar, O.A. Scherman, D. Tuncel, Sequence-specific self-sorting of the binding sites of a ditopic guest by cucurbituril homologues and subsequent formation of a hetero[4]pseudorotaxane, Chem. Eur. J. 15 (2009) 10360-10363;
-
[18]
(g) T. Ooya, D. Inoue, H.S. Choi, et al., pH-Responsive movement of cucurbit[7]uril in a diblock polypseudorotaxane containing dimethyl b-cyclodextrin and cucurbit[7]uril, Org. Lett. 8 (2006) 3159-3162;
-
[19]
(h) D. Sobransingh, A.E. Kaifer, Electrochemically switchable cucurbit[7]urilbased pseudorotaxanes, Org. Lett. 8 (2006) 3247-3250;
-
[20]
(i) K. Moon, A.E. Kaifer, Modes of binding interaction between viologen guests and the cucurbit[7]uril host, Org. Lett. 6 (2004) 185-188;
-
[21]
(j) S. Li, M. Liu, J. Zhang, et al., Preparation of bis(m-phenylene)-32-crown-10-based cryptand/bisparaquat [3]rotaxanes with high efficiency, Eur. J. Org. Chem. (2008) 6128-6133.
-
[22]
[6] (a) V. İbrahimova, S. Ekiz, Ö. Gezici, D. Tuncel, Facile synthesis of cross-linked patchy fluorescent conjugated polymer nanoparticles by click reactions, Polym. Chem. 2 (2011) 2818-2824;
-
[23]
(b) V. Ramalingam, A.R. Urbach, Cucurbit[8]uril rotaxanes, Org. Lett. 13 (2011) 4898-4901;
-
[24]
(c) V. Sindelar, K. Moon, A.E. Kaifer, Binding selectivity of cucurbit[7]uril: bis(-pyridinium)-1, 4-xylylene versus 4,40-bipyridinium guest sites, Org. Lett. 6 (2004) 2665-2668;
-
[25]
(d) C. Ke, R.A. Smaldone, T. Kikuchi, et al., Quantitative emergence of hetero[4]-rotaxanes by template-directed click chemistry, Angew. Chem. Int. Ed. 52 (2013) 381-387.
-
[26]
[7] C. Márquez, R.R. Hudgins, W.M. Nau, Mechanism of host-guest complexation by cucurbituril, J. Am. Chem. Soc. 126 (2004) 5806-5816.
-
[27]
[8] J. Zhao, H.J. Kim, J. Oh, et al., Cucurbit[n]uril derivatives soluble in water and organic solvents, Angew. Chem. Int. Ed. 40 (2001) 4233-4235.
-
[28]
[9] (a) S. Sanjita, K. Mantosh, E.K. Sinha, Facile purification of rare cucurbiturils by affinity chromatography, Org. Lett. 6 (2004) 1225-1228;
-
[29]
(b) L.B. Lu, Y.Q. Zhang, Q.J. Zhu, S.F. Xue, Z. Tao, Synthesis and X-ray structure of the inclusion complex of dodecamethylcucurbit[6]uril with 1, 4-dihydroxybenzene, Molecules 12 (2007) 716-722;
-
[30]
(c) Y.J. Zhao, S.F. Xue, Q.J. Zhu, et al., Synthesis of a symmetrical tetrasub-stituted cucurbit[6]uril and its host-guest inclusion complex with 2, 2'-bipyridine, Chin. Sci. Bull. 49 (2004) 1111-1116;
-
[31]
(d) L.B. Lu, D.H. Yu, Y.Q. Zhang, et al., Supramolecular assemblies based on some new methyl-substituted cucurbit[5]urils through hydrogen bonding, J. Mol. Struct. 885 (2008) 70-75;
-
[32]
(e) D.H. Yu, X.L. Ni, Y.Q. Zhang, et al., Structures of supramolecular assemblies formed by some partial substituted cucurbiturils and some metal ion complexes, J. Mol. Struct. 882 (2008) 128-133;
-
[33]
(f) X.L. Ni, Y.Q. Zhang, Q.J. Zhu, S.F. Xue, Z. Tao, Crystal structures of host-guest complexes of meta-tricyclohexyl cucurbit[6]uril with small organic molecules, J. Mol. Struct. 876 (2008) 322-327.
-
[34]
[10] (a) C. Mukhopadhyay, S. Ghosh, M. Ann, Schmiedekamp, Unraveling the molecular recognition of "three methylene spacer" bis(benzimidazolium) moiety by dibenzo-24-crown-8: pseudorotaxanes under study, Org. Biomol. Chem. 10 (2012) 1434-1439;
-
[35]
(b) K. Zhu, V.N. Vukotic, N. Noujeim, S.J. Loeb, Bis(benzimidazolium) axles and crown ether wheels: a versatile templating pair for the formation of [2]rotaxane molecular shuttles, Chem. Sci. 3 (2012) 3265-3271;
-
[36]
(c) L. Li, G.J. Clarkson, New bis(benzimidazole) cations for threading through dibenzo-24-crown-8, Org. Lett. 9 (2007) 497-500;
-
[37]
(d) D. Castillo, P. Astudillo, J. Mares, F.J. Gonz'alez, A. Vela, J. Tiburcio, Chemically controlled self-assembly of [2]pseudorotaxanes based on 1, 2-bis(benzimidazolium) ethane cations and 24-crown-8 macrocycles, Org. Biomol. Chem. 5 (2007) 2252-2256.
-
[38]
[11] (a) Y.J. Zhao, D.P. Buck, D.L. Morris, M.H. Pourgholami, A.I. Day, J.G. Collins, Solubilisation and cytotoxicity of albendazole encapsulated in cucurbit[n]uril, Org. Biomol. Chem. 6 (2008) 4509-4515;
-
[39]
(b) A.L. Koner, I. Ghosh, N. Saleh, W.M. Nau, Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril, Can. J. Chem. 89 (2011) 139-147.
-
[40]
[12] M.D. Pluth, R.G. Bergman, K.N. Raymond, Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis, Science 316 (2007) 85-88.
-
[41]
[13] (a) J. Mohanty, A.C. Bhasikuttan, W.M. Nau, H. Pal, Host-guest complexation of neutral red with macrocyclic host molecules: contrasting pKa shifts and binding affinities for cucurbit[7]uril and b-cyclodextrin, J. Phys. Chem. B. 110 (2006) 5132-5138;
-
[42]
(b) A.L. Koner, W.M. Nau, Cucurbituril encapsulation of fluorescent dyes, Supramol. Chem. 19 (2007) 55-56;
-
[43]
(c) N. Saleh, A.L. Koner, W.M. Nau, Activation and stabilization of drugs by supramolecular pKa shifts: drug-delivery applications tailored for cucurbiturils, Angew. Chem. Int. Ed. 47 (2008) 5398-5401;
-
[44]
(d) A. Praetorius, D.M. Bailey, T. Schwarzlose, W.M. Nau, Design of a fluorescent dye for indicator displacement from cucurbiturils: a macrocycle-responsive fluorescent switch operating through a pKa shift, Org. Lett. 10 (2008) 4089-4092;
-
[45]
(e) J. Wu, L. Isaacs, Cucurbit[7]uril complexation drives thermal trans-cis-azobenzene isomerization and enables colorimetric amine detection, Chem. Eur. J. 15 (2009) 11675-11680;
-
[46]
(f) I.W. Wyman, D.H. Macartney, Cucurbit[7]uril host-guest complexes of cholines and phosphonium cholines in aqueous solution, Org. Biomol. Chem. 8 (2010) 253-260.
-
[47]
[14] K.S. Rogers, C.C. Clayton, Effects of pH on benzimidazole fluorescence, Anal. Biochem. 48 (1972) 199-201.
-
[48]
[15] Y.D. Pischel, P. Uzunova, W. Remon, M. Nau, Supramolecular logic with macrocyclic input and competitive reset, Chem. Commun. (2010) 2635-2637.
-
[49]
[16] W.J. Chen, J.P. Zeng, Y.Q. Zhang, et al., Crystal structures of two partially methylsubstituted cucurbit[n]urils, Chin. J. Inorg. Chem. 26 (2010) 2018-2024.
-
[50]
[17] (a) A.D. MacKerell Jr., M.S. Sommer, M. Karplus, pH Dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 20GMP/30GMP binding to ribonuclease T1 and implications for catalysis, J. Mol. Biol. 247 (1995) 774-807;
-
[51]
(b) N.C. Ha, M.S. Kim, W. Lee, K.Y. Choi, B.H. Oh, Detection of large pKa perturbations of an inhibitor and a catalytic group at an enzyme active site, a mechanistic basis for catalytic power of many enzymes, J. Biol. Chem. 275 (2000) 41100-41106.
-
[1]
-
-
[1]
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
-
[2]
Muhammad Riaz , Rakesh Kumar Gupta , Di Sun , Mohammad Azam , Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427
-
[3]
Tiantian Li , Ruochen Jin , Bin Wu , Dongming Lan , Yunjian Ma , Yonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701
-
[4]
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
-
[5]
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
-
[6]
Jian Song , Shenghui Wang , Qiuge Liu , Xiao Wang , Shuo Yuan , Hongmin Liu , Saiyang Zhang . N-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678
-
[7]
Jinfeng Chu , Lan Jin , Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016
-
[8]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[9]
Junqiao Zhuo , Xinchen Huang , Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100
-
[10]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[11]
Ping Sun , Yuanqin Huang , Shunhong Chen , Xining Ma , Zhaokai Yang , Jian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005
-
[12]
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
-
[13]
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
-
[14]
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
-
[15]
Yao HUANG , Yingshu WU , Zhichun BAO , Yue HUANG , Shangfeng TANG , Ruixue LIU , Yancheng LIU , Hong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359
-
[16]
Hui-Juan Wang , Wen-Wen Xing , Zhen-Hai Yu , Yong-Xue Li , Heng-Yi Zhang , Qilin Yu , Hongjie Zhu , Yao-Yao Wang , Yu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183
-
[17]
Wenyi Mei , Lijuan Xie , Xiaodong Zhang , Cunjian Shi , Fengzhi Wang , Qiqi Fu , Zhenjiang Zhao , Honglin Li , Yufang Xu , Zhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825
-
[18]
Yadan SUN , Xinfeng LI , Qiang LIU , Oshio Hiroki , Yinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131
-
[19]
Zhuwen Wei , Jiayan Chen , Congzhen Xie , Yang Chen , Shifa Zhu . Divergent de novo construction of α-functionalized pyrrole derivatives via coarctate reaction. Chinese Chemical Letters, 2024, 35(12): 109677-. doi: 10.1016/j.cclet.2024.109677
-
[20]
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(657)
- HTML views(2)