Citation: Hui Wang, Bi-Li Wang, Shu-Yun Ma. Synthesis of visible-light-driven TiO2 yolk-shell spheres with {0 0 1} facets dominated mesoporous shells[J]. Chinese Chemical Letters, ;2013, 24(3): 260-263. shu

Synthesis of visible-light-driven TiO2 yolk-shell spheres with {0 0 1} facets dominated mesoporous shells

  • Corresponding author: Hui Wang, 
  • Received Date: 29 December 2012
    Available Online: 14 January 2013

  • Anatase phase visible-light-driven TiO2 yolk-shell spheres with the size of ca. 1-2 μm have been synthesized with the combination of solvothermal and heat treatment method. XRD, SEM, TEM, XPS, and PL analysis were used to examine structure and properties of the photocatalyst. The N species and Ti3+ centers introduced into the as-prepared photocatalyst can enhance the visible light absorption significantly. The mesoporous shell of the prepared photocatalyst, which promotes the pollutant adsorption ability, consists of the high-reactive {0 0 1} facets dominated nanocrystals. Due to the unique structure, it is also observed that the as-prepared visible-light-driven TiO2 yolk-shell spheres exhibit a superior photocatalytic activity for organic dyes decomposition than the well-known P25.
  • 加载中
    1. [1]

      [1] W. Ho, J.C. Yu, S. Lee, Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity, Chem. Commun. 10 (2006) 1115-1117.

    2. [2]

      [2] M. Hosseini-Sarvari, Nano-tube TiO2 as a new catalyst for eco-friendly synthesis of imines in sunlight, Chin. Chem. Lett. 22 (2011) 547-550.

    3. [3]

      [3] B. Liu, K. Nakata, M. Sakai, et al., Mesoporous TiO2 core-shell spheres composed of nanocrystals with exposed high-energy facets: facile synthesis and formation mechanism, Langmuir 27 (2011) 8500-8508.

    4. [4]

      [4] W.G. Yang, F.R. Wan, Q.W. Chen, et al., Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells, J. Mater. Chem. 20 (2010) 2870-2876.

    5. [5]

      [5] S.W. Liu, J.G. Yu, M. Jaroniec, Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase pPolyhedra with exposed {0 0 1} facets, J. Am. Chem. Soc. 132 (2010) 11914-11916.

    6. [6]

      [6] F. Sauvage, D. Chen, P. Comte, et al., Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%, ACS Nano 4 (2010) 4420-4425.

    7. [7]

      [7] H.G. Yang, C.H. Sun, S.Z. Qiao, et al., Anatase TiO2 single crystals with a large percentage of reactive facets, Nature 453 (2008) 638-641.

    8. [8]

      [8] J.Pan,G.Liu,H.M.Cheng,etal.,Onthetruephotoreactivityorderof{0 0 1}, {0 1 0},and {1 0 1} facets of anatase TiO2 crystals, Angew. Chem. Int. Ed. 50 (2011) 2133-2137.

    9. [9]

      [9] C.Z. Wen, H.B. Jiang, S.Z. Qiao, et al., Synthesis of high-reactive facets dominated anatase TiO2, J. Mater. Chem. 21 (2011) 7052-7061.

    10. [10]

      [10] J.S. Chen, Y.L. Tan, C.M. Li, et al., Constructing hierarchical Spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (0 0 1) facets for fast reversible lithium storage, J. Am. Chem. Soc. 132 (2010) 6124-6130.

    11. [11]

      [11] C.Z. Wen, J.Z. Zhou, H.B. Jiang, et al., Synthesis of micro-sized titanium dioxide nanosheets wholly exposed with high-energy {0 0 1} and {1 0 0} facets, Chem. Commun. 47 (2011) 4400-4402.

    12. [12]

      [12] W. Wang, C.H. Lu, Y.R. Ni, et al., A new sight on hydrogenation of F and N-F doped {0 0 1} facets dominated anatase TiO2 for efficient visible light photocatalyst, Appl. Catal. B: Environ. 127 (2012) 28-35.

    13. [13]

      [13] G. Liu, H.G. Yang, X. Wang, et al., Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant {0 0 1} facets, J. Phys. Chem. C 113 (2009) 21784-21788.

    14. [14]

      [14] W. Wang, Y.R. Ni, C.H. Lu, et al., Hydrogenation of TiO2 nanosheets with exposed {0 0 1} facets for enhanced photocatalytc activity, RSC Adv. 2 (2012) 8286-8288.

    15. [15]

      [15] W. Wang, C.H. Lu, Y.R. Ni, et al., Enhanced visible-light photoactivity of {0 0 1} facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+, Catal. Commun. 22 (2012) 19-23.

    16. [16]

      [16] H.H. Ou, S.L. Lo, C.H. Liao, N-doped TiO2 prepared from microwave-assisted titanate nanotubes (NaxH2-xTi3O7): the effect of microwave irradiation during TNT synthesis on the visible light photoactivity of N-doped TiO2, J. Phys. Chem. C 115 (2011) 4000-4007.

    17. [17]

      [17] D.J. Pulsipher, I.T. Martin, E.R. Fisher, Controlled nitrogen doping and film colorimetrics in porous TiO2 materials using plasma processing, ACS Appl. Mater. Inter. 2 (2010) 1743-1753.

  • 加载中
    1. [1]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    2. [2]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    3. [3]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    4. [4]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    5. [5]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    6. [6]

      Bingke ZhangDongbo WangJiamu CaoWen HeGang LiuDonghao LiuChenchen ZhaoJingwen PanSihang LiuWeifeng ZhangXuan FangLiancheng ZhaoJinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254

    7. [7]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    8. [8]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    9. [9]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    10. [10]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    11. [11]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    12. [12]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195

    13. [13]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    14. [14]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    15. [15]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    16. [16]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    17. [17]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    18. [18]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    19. [19]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    20. [20]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

Metrics
  • PDF Downloads(0)
  • Abstract views(618)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return