Citation: Fei Gao, Jian-Bin Zhang, Chun-Ping Li, Tian-Rui Huo, Xiong-Hui Wei. Supramolecular binding of amines with functional magnesium tetraphenylporphyrin for CO2 capture[J]. Chinese Chemical Letters, ;2013, 24(3): 249-252. shu

Supramolecular binding of amines with functional magnesium tetraphenylporphyrin for CO2 capture

  • Corresponding author: Jian-Bin Zhang,  Xiong-Hui Wei, 
  • Received Date: 8 November 2012
    Available Online: 2 January 2013

  • In this work,magnesium tetraphenylporphyrin (MgTPP) was used as a new supramolecular amine-fixing agent. Once introduced, CO2 easily competes with MgTPP for amines, leading to the release of MgTPP. The processes can be explained by the fact that the association constant (Kassoc) values of MgTPP with amines were in the range of 0.6 (ethanolamine) to 3.9 (ethylenediamine), which are lower than the Kassoc values of CO2 with these amines. MgTPP interacted with aniline, ethanolamine, pyrrolidine, or ethylenediamine to form 1:1 adducts. Ethylenediamine presents a stronger Kassoc value for MgTPP, so it was considered an optimal agent for CO2 capture.
  • 加载中
    1. [1]

      [1] A.J. Morris, G.J. Meyer, E. Fujita, Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels, Acc. Chem. Res. 42 (2009) 983-1994.

    2. [2]

      [2] R. Monastersky, A burden beyond bearing, Nature 458 (2009) 1091-1094.

    3. [3]

      [3] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed. 49 (2010) 6058-6082.

    4. [4]

      [4] H. Choi, Y.C. Park, Y.H. Kim, Y.S. Lee, Ambient carbon dioxide capture by boronrich boron nitride nanotube, J. Am. Chem. Soc. 133 (2011) 2084-2087.

    5. [5]

      [5] E.R. Monazam, L.J. Shadle, R. Siriwardane, Performance and kinetics of a solid amine sorbent for carbon dioxide removal, Ind. Eng. Chem. Res. 50 (2011) 10989-10995.

    6. [6]

      [6] S. Lee, T.P. Filburn, M. Gray, J.W. Park, H.J. Song, Screening test of solid amine sorbents for CO2 capture, Ind. Eng. Chem. Res. 47 (2008) 7419-7423.

    7. [7]

      [7] A. Aroonwilas, A. Veawab, P. Tontiwachwuthikul, Behavior of the mass-transfer coefficient of structured packing in CO2 absorbers with chemical reactions, Ind. Eng. Chem. Res. 38 (1999) 2044-2050.

    8. [8]

      [8] C. Lastoskie, Caging carbon dioxide, Science 330 (2010) 595-596.

    9. [9]

      [9] J. Kemper, G. Ewert, M. Grünewald, Absorption and regeneration performance of novel reactive amine solvents for post-combustion CO2 capture, Energy Procedia 4 (2011) 232-239.

    10. [10]

      [10] J.F. Zhang, O. Nwani, Y. Tan, D.W. Agar, Carbon dioxide absorption into biphasic amine solvent with solvent loss reduction, Chem. Eng. Res. Des. 89 (2011) 1190-1196.

    11. [11]

      [11] K. Veltman, B. Singh, E.G. Hertwich, Human and environmental impact assessment of postcombustion CO2 capture focusing on emissions from amine-based scrubbing solvents to air, Environ. Sci. Technol. 44 (2010) 1496-1502.

    12. [12]

      [12] G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325 (2009) 1652-1654.

    13. [13]

      [13] X.L. Ma, X.X. Wang, C.S. Song, Molecular basket sorbents for separation of CO2 and H2S from various gas streams, J. Am. Chem. Soc. 131 (2009) 5777-5783.

    14. [14]

      [14] K.E. Gutowski, E.J. Maginn, Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation, J. Am. Chem. Soc. 130 (2008) 14690-14704.

    15. [15]

      [15] J. Stewart, R.A. Lanning, Reduce amine plant solvent losses, Hydrocarb. Process. 73 (1994) 67-81.

    16. [16]

      [16] W.Q. Zheng, N. Shan, L.X. Yu, X.Q. Wang, UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins, Dyes Pigments 77 (2008) 153-157.

    17. [17]

      [17] J.P. Collman, Y.L. Yan, T. Eberspacher, X.J. Xie, Oxygen binding of water-soluble cobalt porphyrins in aqueous solution, Inorg. Chem. 44 (2005) 9628-9630.

    18. [18]

      [18] K. Wynne, S.M. Lecours, C. Calli, M.J. Therien, R.M. Hochstrasser, Porphyrinquinone electron transfer revisited. The role of excited-state eegeneracy in ultrafast charge transfer reactions, J. Am. Chem. Soc. 117 (1995) 3749-3753.

    19. [19]

      [19] A. Satake, Y. Kobuke, Dynamic supramolecular porphyrin systems, Tetrahedron 61 (2005) 13-41.

    20. [20]

      [20] J.G. Xu, Z.B. Wang, Fluorometry, 3rd ed., Science Press, Beijing, 2006.

    21. [21]

      [21] S. Iotti, A. Sabatini, A. Vacca, Chemical and biochemical thermodynamics: from ATP hydrolysis to a general reassessment, J. Phys. Chem. A 114 (2010) 1985-1993.

    22. [22]

      [22] C.J. Liu, W.C. Lu, Optical amine sensor based on metallophthalocyanine, J. Chin. Inst. Chem. Eng. 38 (2007) 483-488.

    23. [23]

      [23] A.V. Leontiev, D.M. Rudkevich, Revisiting noncovalent SO2-amine chemistry: an indicator-displacement assay for colorimetric detection of SO2, J. Am. Chem. Soc. 127 (2005) 14126-14127.

    24. [24]

      [24] M. Al-Juaied, G.T. Rochelle, Thermodynamics and equilibrium solubility of carbon dioxide in diglycolamine/morpholine/water, J. Chem. Eng. Data 51 (2006) 708-717.

    25. [25]

      [25] R.H.Weiland, T.Chakravarty, A.E.Mather, Solubility of carbondioxideandhydrogen sulfide in aqueous alkanolamines, Ind. Eng. Chem. Res. 32 (1993) 1419-1430.

  • 加载中
    1. [1]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    2. [2]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    3. [3]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    4. [4]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    5. [5]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    6. [6]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    7. [7]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    8. [8]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193

    9. [9]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    10. [10]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    11. [11]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    14. [14]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    15. [15]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    16. [16]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    17. [17]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    18. [18]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

Metrics
  • PDF Downloads(0)
  • Abstract views(595)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return