Citation:
Fei Gao, Jian-Bin Zhang, Chun-Ping Li, Tian-Rui Huo, Xiong-Hui Wei. Supramolecular binding of amines with functional magnesium tetraphenylporphyrin for CO2 capture[J]. Chinese Chemical Letters,
;2013, 24(3): 249-252.
-
In this work,magnesium tetraphenylporphyrin (MgTPP) was used as a new supramolecular amine-fixing agent. Once introduced, CO2 easily competes with MgTPP for amines, leading to the release of MgTPP. The processes can be explained by the fact that the association constant (Kassoc) values of MgTPP with amines were in the range of 0.6 (ethanolamine) to 3.9 (ethylenediamine), which are lower than the Kassoc values of CO2 with these amines. MgTPP interacted with aniline, ethanolamine, pyrrolidine, or ethylenediamine to form 1:1 adducts. Ethylenediamine presents a stronger Kassoc value for MgTPP, so it was considered an optimal agent for CO2 capture.
-
-
-
[1]
[1] A.J. Morris, G.J. Meyer, E. Fujita, Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels, Acc. Chem. Res. 42 (2009) 983-1994.
-
[2]
[2] R. Monastersky, A burden beyond bearing, Nature 458 (2009) 1091-1094.
-
[3]
[3] D.M. D'Alessandro, B. Smit, J.R. Long, Carbon dioxide capture: prospects for new materials, Angew. Chem. Int. Ed. 49 (2010) 6058-6082.
-
[4]
[4] H. Choi, Y.C. Park, Y.H. Kim, Y.S. Lee, Ambient carbon dioxide capture by boronrich boron nitride nanotube, J. Am. Chem. Soc. 133 (2011) 2084-2087.
-
[5]
[5] E.R. Monazam, L.J. Shadle, R. Siriwardane, Performance and kinetics of a solid amine sorbent for carbon dioxide removal, Ind. Eng. Chem. Res. 50 (2011) 10989-10995.
-
[6]
[6] S. Lee, T.P. Filburn, M. Gray, J.W. Park, H.J. Song, Screening test of solid amine sorbents for CO2 capture, Ind. Eng. Chem. Res. 47 (2008) 7419-7423.
-
[7]
[7] A. Aroonwilas, A. Veawab, P. Tontiwachwuthikul, Behavior of the mass-transfer coefficient of structured packing in CO2 absorbers with chemical reactions, Ind. Eng. Chem. Res. 38 (1999) 2044-2050.
-
[8]
[8] C. Lastoskie, Caging carbon dioxide, Science 330 (2010) 595-596.
-
[9]
[9] J. Kemper, G. Ewert, M. Grünewald, Absorption and regeneration performance of novel reactive amine solvents for post-combustion CO2 capture, Energy Procedia 4 (2011) 232-239.
-
[10]
[10] J.F. Zhang, O. Nwani, Y. Tan, D.W. Agar, Carbon dioxide absorption into biphasic amine solvent with solvent loss reduction, Chem. Eng. Res. Des. 89 (2011) 1190-1196.
-
[11]
[11] K. Veltman, B. Singh, E.G. Hertwich, Human and environmental impact assessment of postcombustion CO2 capture focusing on emissions from amine-based scrubbing solvents to air, Environ. Sci. Technol. 44 (2010) 1496-1502.
-
[12]
[12] G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325 (2009) 1652-1654.
-
[13]
[13] X.L. Ma, X.X. Wang, C.S. Song, Molecular basket sorbents for separation of CO2 and H2S from various gas streams, J. Am. Chem. Soc. 131 (2009) 5777-5783.
-
[14]
[14] K.E. Gutowski, E.J. Maginn, Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation, J. Am. Chem. Soc. 130 (2008) 14690-14704.
-
[15]
[15] J. Stewart, R.A. Lanning, Reduce amine plant solvent losses, Hydrocarb. Process. 73 (1994) 67-81.
-
[16]
[16] W.Q. Zheng, N. Shan, L.X. Yu, X.Q. Wang, UV-visible, fluorescence and EPR properties of porphyrins and metalloporphyrins, Dyes Pigments 77 (2008) 153-157.
-
[17]
[17] J.P. Collman, Y.L. Yan, T. Eberspacher, X.J. Xie, Oxygen binding of water-soluble cobalt porphyrins in aqueous solution, Inorg. Chem. 44 (2005) 9628-9630.
-
[18]
[18] K. Wynne, S.M. Lecours, C. Calli, M.J. Therien, R.M. Hochstrasser, Porphyrinquinone electron transfer revisited. The role of excited-state eegeneracy in ultrafast charge transfer reactions, J. Am. Chem. Soc. 117 (1995) 3749-3753.
-
[19]
[19] A. Satake, Y. Kobuke, Dynamic supramolecular porphyrin systems, Tetrahedron 61 (2005) 13-41.
-
[20]
[20] J.G. Xu, Z.B. Wang, Fluorometry, 3rd ed., Science Press, Beijing, 2006.
-
[21]
[21] S. Iotti, A. Sabatini, A. Vacca, Chemical and biochemical thermodynamics: from ATP hydrolysis to a general reassessment, J. Phys. Chem. A 114 (2010) 1985-1993.
-
[22]
[22] C.J. Liu, W.C. Lu, Optical amine sensor based on metallophthalocyanine, J. Chin. Inst. Chem. Eng. 38 (2007) 483-488.
-
[23]
[23] A.V. Leontiev, D.M. Rudkevich, Revisiting noncovalent SO2-amine chemistry: an indicator-displacement assay for colorimetric detection of SO2, J. Am. Chem. Soc. 127 (2005) 14126-14127.
-
[24]
[24] M. Al-Juaied, G.T. Rochelle, Thermodynamics and equilibrium solubility of carbon dioxide in diglycolamine/morpholine/water, J. Chem. Eng. Data 51 (2006) 708-717.
-
[25]
[25] R.H.Weiland, T.Chakravarty, A.E.Mather, Solubility of carbondioxideandhydrogen sulfide in aqueous alkanolamines, Ind. Eng. Chem. Res. 32 (1993) 1419-1430.
-
[1]
-
-
-
[1]
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
-
[2]
Jian Yang , Guang Yang , Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267
-
[3]
Chao-Long Chen , Rong Chen , La-Sheng Long , Lan-Sun Zheng , Xiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795
-
[4]
Jincheng Zhang , Mengjie Sun , Jiali Ren , Rui Zhang , Min Ma , Qingzhong Xue , Jian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491
-
[5]
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
-
[6]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[7]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[8]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193
-
[9]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[10]
Gang Lang , Jing Feng , Bo Feng , Junlan Hu , Zhiling Ran , Zhiting Zhou , Zhenju Jiang , Yunxiang He , Junling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113
-
[11]
Bingbing Shi , Yuchun Wang , Yi Zhou , Xing-Xing Zhao , Yizhou Li , Nuoqian Yan , Wen-Juan Qu , Qi Lin , Tai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540
-
[12]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[13]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[14]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[15]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[16]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[17]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[18]
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
-
[19]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[20]
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(595)
- HTML views(10)