Citation: Ping Qiu, Yong-Nian Ni, Serge Kokot. Application of artificial neural networks to the determination of pesticides by linear sweep stripping voltammetry[J]. Chinese Chemical Letters, ;2013, 24(3): 246-248. shu

Application of artificial neural networks to the determination of pesticides by linear sweep stripping voltammetry

  • Corresponding author: Yong-Nian Ni, 
  • Received Date: 23 November 2012
    Available Online: 6 January 2013

  • In this work, artificial neural network (ANN), a powerful chemometrics approach for linear and nonlinear calibration models, was applied to detect three pesticides in mixtures by linear sweep stripping voltammetry (LSSV) despite their overlapped voltammograms. Electrochemical parameters for the voltammetry, such as scan rate, deposit time and deposit potential, were evaluated and optimized from the signal response data using ANN model by minimizing the relative prediction error (RPE). The proposed method was successfully applied to the detection of pesticides in synthetic samples and several commercial fruit samples.
  • 加载中
    1. [1]

      [1] E.M. Garrido, C. Delerue-Matos, J.L.F.C. Lima, A.M.O. Brett, Electrochemical methods in pesticides control, Anal. Lett. 37 (2004) 1755-1791.

    2. [2]

      [2] D.B. Barr, L.L. Needham, Analytical methods for biological monitoring of exposure to pesticides: a review, J. Chromatogr. B 778 (2002) 5-9.

    3. [3]

      [3] R.R. Kesari, V.K. Gupta, A sensitive spectrophotometric method for the determination of dithiocarbamate fungicide and its application in environmental samples, Talanta 45 (1998) 1097-1102.

    4. [4]

      [4] V.K. Sharma, J.S. Aulakh, A.K. Malik, Fourth derivative spectrophotometric determination of fungicide thiram (tetramethyl thiuram disulphide) in a commercial sample and grains using MIBK, Talanta 65 (2005) 375-379.

    5. [5]

      [5] D.A. Lambropoulou, I.K. Lonstantinou, T.A. Albanis, Determination of fungicides in natural waters using solid phase microextraction (SPME) and gas chromatography coupled with electron capture and mass spectrometric detection, J. Chromatogr. A 893 (2000) 143-156.

    6. [6]

      [6] Z.M. Liu, X.H. Zang, W.H. Liu, C. Wang, Z. Wang, Novel method for the determination of five carbamate pesticides in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography, Chin. Chem. Lett. 20 (2009) 213-216.

    7. [7]

      [7] C.M. Torres, Y. Pico, M.J. Redondo, J. Manes, Matrix solid phase dispersion extraction procedure for multiresidue pesticide analysis in oranges, J. Chromatogr. A 719 (1996) 95-103.

    8. [8]

      [8] S.P. Zhang, L.G. Shan, Z.R. Tian, et al., Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue, Chin. Chem. Lett. 19 (2008) 592-594.

    9. [9]

      [9] J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry, 4th ed., Pearson Education Limited, London, 2000, pp. 122-126.

    10. [10]

      [10] Y.N. Ni, P. Qiu, S. Kokot, Simultaneous determination of three organophosphorus pesticides by differential pulse stripping voltammetry and chemometrics, Anal. Chim. Acta 516 (2004) 7-17.

    11. [11]

      [11] D.S. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Syst. 2 (1988) 321-355.

    12. [12]

      [12] Y.N. Ni, G.W. Zhang, S. Kokot, Simultaneous spectrophotometric determination of maltol, ethyl maltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks, Food Chem. 89 (2005) 465-473.

    13. [13]

      [13] M. Stone, Cross-validatory choice and assessment of statistical predictions, J. R. Statist. Soc. B 36 (1974) 111-147.

    14. [14]

      [14] B. Hemmateenejad, M. Akhond, R. Miri, M. Shamsipur, Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines (nifedipine analogous), J. Chem. Inf. Comput. Sci. 43 (2003) 1328-1334.

  • 加载中
    1. [1]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    2. [2]

      Feihu WuGengwen ChenKaitao LaiShiqing ZhangYingchao LiuRuijian LuoXiaocong WangPinzhi CaoYi YeJiarong LianJunle QuZhigang YangXiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884

    3. [3]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    4. [4]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    5. [5]

      Meng ShanYongmei YuMengli SunShuping YangMengqi WangBo ZhuJunbiao Chang . Bifunctional organocatalyst-catalyzed dynamic kinetic resolution of hemiketals for synthesis of chiral ketals via hydrogen bonding control. Chinese Chemical Letters, 2025, 36(1): 109781-. doi: 10.1016/j.cclet.2024.109781

    6. [6]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    7. [7]

      Peizhe LiQiaoling LiuMengyu PeiYuci GanYan GongChuchen GongPei WangMingsong WangXiansong WangDa-Peng YangBo LiangGuangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457

    8. [8]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    9. [9]

      Yunxin LiJinghui ZhangJisen ChenFeng ZhuZhiqiang LiuPeng BaoWei ShenSheng Tang . Detection of SARS-CoV-2 based on artificial intelligence-assisted smartphone: A review. Chinese Chemical Letters, 2024, 35(7): 109220-. doi: 10.1016/j.cclet.2023.109220

    10. [10]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    11. [11]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    12. [12]

      Shangda QuYiming YuanXu YeWentao Xu . High sensitivity artificial synapses using printed high-transmittance ITO fibers for neuromorphic computing. Chinese Chemical Letters, 2024, 35(12): 110030-. doi: 10.1016/j.cclet.2024.110030

    13. [13]

      Ran CenYan-Yan TangLi-Xia ChenZhu TaoXin Xiao . A novel supramolecular assembly based on nor-seco-cucurbit[10]uril for spermine sensing and artificial light-harvesting. Chinese Chemical Letters, 2025, 36(1): 109744-. doi: 10.1016/j.cclet.2024.109744

    14. [14]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

Metrics
  • PDF Downloads(0)
  • Abstract views(608)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return