Citation: Shan-Shan Li, Hai-Long Wu, Ya-Juan Liu, Hui-Wen Gu, Ru-Qin Yu. Simultaneous determination of tyrosine and dopamine in urine samples using excitation-emission matrix fluorescence coupled with second-order calibration[J]. Chinese Chemical Letters, ;2013, 24(3): 239-242. shu

Simultaneous determination of tyrosine and dopamine in urine samples using excitation-emission matrix fluorescence coupled with second-order calibration

  • Corresponding author: Hai-Long Wu, 
  • Received Date: 13 November 2012
    Available Online: 6 January 2013

  • A "green" and quick analytical method for complex compounds was developed for simultaneous determination of tyrosine (Tyr) and dopamine (DA) in urine samples in this paper. The three-way responsive data recorded by excitation-emission matrix fluorescence (EEM) spectrometer was analyzed using second-order calibration methods based on both parallel factor analysis (PARAFAC) and selfweighted alternating trilinear decomposition (SWATLD) algorithms. The EEM spectra of the analytes were overlapped with the background in urine samples. However the second-order advantage of both PARAFAC and SWATLD methods was exploited, even in the presence of unknown interferences and the satisfactory results can be obtained. Furthermore, the linear ranges of Tyr and DA were determined to be 0.042-6.42 μg/mL and 0.18-4.43 μmg/mL, respectively, and the accuracies of both methods were validated by the analytical figures of merit (FOM).
  • 加载中
    1. [1]

      [1] K.S. Booksh, B.R. Kowalski, Theory of analytical chemistry, Anal. Chem. 66 (1994) 782-791.

    2. [2]

      [2] H.L.Wu, M. Shibukawa, K. Oguma, Analternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons, J. Chemom. 12 (1998) 1-26.

    3. [3]

      [3] H.L. Wu, J.F. Nie, Y.J. Yu, et al., Multi-way chemometric methodologies and applications: a central summary of our research work, Anal. Chim. Acta 650 (2009) 131-142.

    4. [4]

      [4] H.Y. Fu, H.L. Wu, J.F. Nie, et al., Highly sensitive fluorescence quantification of irinotecan in biological fluids with the aid of second-order advantage, Chin. Chem. Lett. 21 (2010) 1482-1486.

    5. [5]

      [5] L.Q. Ouyang, H.L. Wu, Y.J. Liu, et al., Simultaneous determination of metronidazole and tinidazole in plasma by using HPLC-DAD coupled with second-order calibration, Chin. Chem. Lett. 21 (2010) 1223-1226.

    6. [6]

      [6] D.E. Matthews, An overview of phenylalanine and tyrosine kinetics in humans, J. Nutr. 137 (2007) 1549S-1555S.

    7. [7]

      [7] P. Revest, A. Longstaff, Molecular Neuroscience, Garland Science, New York, 1998.

    8. [8]

      [8] J.C. Garbutt, D.P. van Kammen, R.A. Levine, et al., Cerebrospinal fluid hydroxylase cofactor in schizophrenia, Psychol. Res. 6 (1982) 145-151.

    9. [9]

      [9] J.F. Leckman, W.K. Goodman, G.M. Anderson, et al., Cerebrospinal fluid biogenic amines in obsessive compulsive disorder, Tourette's syndrome, and healthy controls, Neuropsychopharmacology 12 (1995) 73-86.

    10. [10]

      [10] R.F. Thompson, The Brain: A Neuroscience Primer, Worth Pub, New York, 2000.

    11. [11]

      [11] G.R. Xu, M.L. Xu, J.M. Zhang, et al., Electropolymerization of negatively charged Ni (Ⅱ) complex for the selective determination of dopamine in the presence of ascorbic acid, Bioelectrochemistry 72 (2008) 87-93.

    12. [12]

      [12] A.S. Adekunle, B.O. Agboola, J. Pillay, et al., Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (Ⅲ) oxide nanoparticles platform, Sens. Actuators B 148 (2010) 93-102.

    13. [13]

      [13] R. Bro, PARAFAC: tutorial and applications, Chemom. Intell. Lab. Syst. 38 (1997) 149-171.

    14. [14]

      [14] Z.P. Chen, H.L. Wu, J.H. Jiang, et al., A novel trilinear decomposition algorithm for second-order linear calibration, Chemom. Intell. Lab. Syst. 52 (2000) 75-86.

    15. [15]

      [15] R. Bro, H.A.L. Kiers, A new efficient method for determining the number of components in PARAFAC models, J. Chemom. 17 (2003) 274-286.

    16. [16]

      [16] A.C. Olivieri, Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory, Anal. Chem. 77 (2005) 4936-4946.

    17. [17]

      [17] A.C. Olivieri, N.K.M. Faber, A closed form expression for computing the sensitivity in second order bilinear calibration, J. Chemom. 19 (2005) 583-592.

  • 加载中
    1. [1]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    2. [2]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    3. [3]

      Xilin BaiWei DengJingjuan WangMing Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959

    4. [4]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    5. [5]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    6. [6]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    7. [7]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    8. [8]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    9. [9]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    10. [10]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

Metrics
  • PDF Downloads(0)
  • Abstract views(598)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return