Citation: Amin Rostami, Bahman Tahmasbi, Hoshyar Gholami, Hajir Taymorian. Supported N-propylsulfamic acid on magnetic nanoparticles used as recoverable and recyclable catalyst for the synthesis of 2, 3-dihydroquinazolin-4(1H)-ones in water[J]. Chinese Chemical Letters, ;2013, 24(3): 211-214.
-
An efficient and eco-friendly method is reported for the synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones from direct cyclocondensation of anthranilamide with aldehydes and ketones using N-propylsulfamic acid supported onto magnetic Fe3O4 nanoparticles (MNPs-PSA) as a recoverable and recyclable nanocatalyst in good to excellent yields in water at 70℃. The catalyst was readily separated using an external magnet and reusable without significant loss of their catalytic efficiency.
-
-
[1]
[1] C.O. Dalaigh, S.A. Corr, Y.G. Ko, S.J. Connon, Amagnetic-nanoparticle-supported 4-N,N-dialkylaminopyridine catalyst: excellent reactivity combined with facile catalyst recovery and recyclability, Angew. Chem. Int. Ed. 46 (2007) 4329-4332.
-
[2]
[2] D. Guin, B. Baruwati, S.V. Manorama, Pd on surface-modified NiFe2O4 nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions, Org. Lett. 9 (2007) 1419-1421.
-
[3]
[3] S. Laurent, D. Forge, M. Port, et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064-2110.
-
[4]
[4] C.T. Yavuz, J.T. Mayo, W.W. Yu, et al., Low-field magnetic separation of monodisperse Fe3O4 nanocrystals, Science 314 (2006) 964-967.
-
[5]
[5] K.T.S. Alexander, L.G. Robin, Simple preparation and application of TEMPO-coated Fe3O4 superparamagnetic nanoparticles for selective oxidation of alcohols, Chem. Eur. J. 16 (2010) 12718-12726.
-
[6]
[6] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts, J. Am. Chem. Soc. 128 (2006) 5279-5282.
-
[7]
[7] V. Polshettiwar, R. Luque, A. Fihri, et al., Magnetically recoverable nanocatalysts, Chem. Rev. 111 (2011) 3036-3075.
-
[8]
[8] B. Karimi, E. Farhangi, Highly recyclable magnetic core-shell nanoparticle-supported TEMPO catalyst for efficient metal-and halogen-free aerobic oxidation of alcohols in water, Chem. Eur. J. 17 (2011) 6056-6060.
-
[9]
[9] Y.H. Liu, J. Deng, J.W. Gao, Z.H. Zhange, Triflic acid-functionalized silica-coated magnetic nanoparticles as a magnetically separable catalyst for synthesis of gemdihydroperoxides, Adv. Synth. Catal. 354 (2012) 441-447.
-
[10]
[10] H. Yang, G. Li, Z. Ma, Magnetic core-shell-structured nanoporous organosilica microspheres for the Suzuki-Miyaura coupling of aryl chlorides: improved catalytic activity and facile catalyst recovery, J. Mater. Chem. 22 (2012) 6639-6648.
-
[11]
[11] H. Yang, Y. Wang, Y. Qin, et al., One-pot preparation of magnetic N-heterocyclic carbene-functionalized silica nanoparticles for the Suzuki-Miyaura coupling of aryl chlorides: improved activity and facile catalyst recovery, Green Chem. 13 (2011) 1352-1361.
-
[12]
[12] Y. Xia, Z.N. Yang, M. Hour, et al., Antitumor agents. Part 204: synthesis and biological evaluation of substituted 2-aryl quinazolinones, Bioorg. Med. Chem. Lett. 11 (2001) 1193-1196.
-
[13]
[13] R.J. Abdel-Jalil, W. Volter, M.A. Saeed, Novel method for the synthesis of 4(3H)-quinazolinones, Tetrahedron Lett. 45 (2004) 3475-3476.
-
[14]
[14] J.F. Liu, J. Lee, A.M. Dalton, et al., Microwave-assisted one-pot synthesis of 2,3-disubstituted 3H-quinazolin-4-ones, Tetrahedron Lett. 46 (2005) 1241-1244.
-
[15]
[15] D.J. Connolly, D. Cusack, T.P. O'Sullivan, P.J. Guiry, Synthesis of quinazolinones and quinazolines, Tetrahedron 61 (2005) 10153-10202, and references therein.
-
[16]
[16] M. Baghbanzadeh, P. Salehi, M. Dabiri, G. Kozehgary, Water-accelerated synthesis of novel bis-2,3-dihydroquinazolin-4-(1H)-one derivatives, Synthesis (2006) 344-3448.
-
[17]
[17] J.X. Chen, D.Z. Wu, F. He, et al., Gallium(Ⅲ) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones, Tetrahedron Lett. 49 (2008) 3814-3818.
-
[18]
[18] M. Dabiri, P. Salehi, S. Otokesh, G. Kozehgary, A.A. Mohammadi, Efficient synthesis ofmono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl(SO4)2·12H2O as a reusable catalyst in water and ethanol, Tetrahedron Lett. 46 (2005) 6123-6126.
-
[19]
[19] A. Davoodnia, S. Allameh, A.R. Fakhari, N. Tavakoli-Hoseini, Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst, Chin. Chem. Lett. 21 (2010) 550-553.
-
[20]
[20] A. Rostami, A. Tavakoli, Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol, Chin. Chem. Lett. 22 (2011) 1317-1320.
-
[21]
[21] R.Z. Qiao, B.L. Xu, Y.H. Wang, A facile synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones in 2,2,2-trifluoroethanol, Chin. Chem. Lett. 18 (2007) 656-658.
-
[22]
[22] H.R. Shaterian, A.R. Oveisi, PPA-SiO2 as a heterogeneous catalyst for efficient synthesis of 2-substituted-1,2,3,4-tetrahydro-4-quinazolinones under solventfree conditions, Chin. J. Chem. 27 (2009) 2418-2422.
-
[23]
[23] M. Wang, T.T. Zhang, Y. Liang, J.J. Gao, Strontium chloride-catalyzed one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in protic media, Chin. Chem. Lett. 22 (2011) 1423-1426.
-
[24]
[24] M.M. Heravi, B. Baghernejad, H.A. Oskooie, Application of sulfamic acid in organic synthesis, Curr. Org. Chem. 13 (2009) 1002-1014.
-
[25]
[25] A. Santra, G. Guchhait, A.K. Misra, Efficient acylation and sulfation of carbohydrates using sulfamic acid, a mild, eco-friendly catalyst under organic solventfree conditions, Green Chem. 13 (2011) 1345-1351.
-
[26]
[26] N. Shapiro, A. Vigalok, Highly efficient organic reactions "on water", "in water", and both, Angew. Chem. Int. Ed. 120 (2008) 2891-2894.
-
[27]
[27] A. Rostami, J. Akradi, A highly efficient, green, rapid, and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solventfree conditions, Tetrahedron Lett. 51 (2010) 3501-3503.
-
[28]
[28] A. Rostami, F. Ahamad-Jangi, Sulfamic acid: an efficient, cost-effective and green catalyst for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free, Chin. Chem. Lett. 22 (2011) 1029-1032.
-
[29]
[29] A. Khazaei, A. Rostami, F. Mantashlo, π-Toluenesulfonyl chloride as a new and effective catalyst for acetylation and formylation of hydroxyl compounds under mild conditions, Chin. Chem. Lett. 21 (2010) 14-30.
-
[30]
[30] A. Rostami, A. Khazaei, H.A. Alavi-Nik, Z. Toodeh-Roosta, Formylation of alcohol with Formic acid under solvent-free and neutral conditions catalyzed by free I2 or I2 generated, in situ from Fe(NO3)3·9H2O/NaI, Chin. J. Catal. 32 (2011) 60-64.
-
[31]
[31] M.Z. Kassaee, H. Masrouri, F. Movahedi, Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water, Appl. Catal. A: Gen. 395 (2011) 28-30.
-
[32]
[32] X. Liu, Z. Ma, J. Xing, H.J. Liu, Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres, Magn. Magn. Mater. 270 (2004) 1-6.
-
[1]
-
-
[1]
Xun Zhu , Chenchen Zhang , Yingying Li , Yin Lu , Na Huang , Dawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753
-
[2]
Wen-Tao Ouyang , Jun Jiang , Yan-Fang Jiang , Ting Li , Yuan-Yuan Liu , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038
-
[3]
Runze Liu , Yankai Bian , Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250
-
[4]
Xiao-Ming Chen , Lianhui Song , Jun Pan , Fei Zeng , Yi Xie , Wei Wei , Dong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112
-
[5]
Chang LIU , Chao ZHANG , Tongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305
-
[6]
Yan Cheng , Hua-Peng Ruan , Yan Peng , Longhe Li , Zhenqiang Xie , Lang Liu , Shiyong Zhang , Hengyun Ye , Zhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554
-
[7]
Hualin Jiang , Wenxi Ye , Huitao Zhen , Xubiao Luo , Vyacheslav Fominski , Long Ye , Pinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984
-
[8]
Ke Wang , Jia Wu , Shuyi Zheng , Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104
-
[9]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[10]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[11]
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
-
[12]
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
-
[13]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[14]
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
-
[15]
Guang-Xu Duan , Queting Chen , Rui-Rui Shao , Hui-Huang Sun , Tong Yuan , Dong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751
-
[16]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[17]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[18]
Junjun Huang , Ran Chen , Yajian Huang , Hang Zhang , Anran Zheng , Qing Xiao , Dan Wu , Ruxia Duan , Zhi Zhou , Fei He , Wei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594
-
[19]
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
-
[20]
Jiaxu Wang , Jinxie Zhang , Xiuping Wang , Jingying Wang , Lina Chen , Jiahui Cao , Wei Cao , Siyu Liang , Ping Luan , Ke Zheng , Xiao-Kun Ouyang , Li Gao , Xiaowen Ou , Fan Zhang , Meitong Ou , Lin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(656)
- HTML views(22)