Citation: Amin Rostami, Bahman Tahmasbi, Hoshyar Gholami, Hajir Taymorian. Supported N-propylsulfamic acid on magnetic nanoparticles used as recoverable and recyclable catalyst for the synthesis of 2, 3-dihydroquinazolin-4(1H)-ones in water[J]. Chinese Chemical Letters, ;2013, 24(3): 211-214. shu

Supported N-propylsulfamic acid on magnetic nanoparticles used as recoverable and recyclable catalyst for the synthesis of 2, 3-dihydroquinazolin-4(1H)-ones in water

  • Corresponding author: Amin Rostami, 
  • Received Date: 7 September 2012
    Available Online: 10 December 2012

  • An efficient and eco-friendly method is reported for the synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones from direct cyclocondensation of anthranilamide with aldehydes and ketones using N-propylsulfamic acid supported onto magnetic Fe3O4 nanoparticles (MNPs-PSA) as a recoverable and recyclable nanocatalyst in good to excellent yields in water at 70℃. The catalyst was readily separated using an external magnet and reusable without significant loss of their catalytic efficiency.
  • 加载中
    1. [1]

      [1] C.O. Dalaigh, S.A. Corr, Y.G. Ko, S.J. Connon, Amagnetic-nanoparticle-supported 4-N,N-dialkylaminopyridine catalyst: excellent reactivity combined with facile catalyst recovery and recyclability, Angew. Chem. Int. Ed. 46 (2007) 4329-4332.

    2. [2]

      [2] D. Guin, B. Baruwati, S.V. Manorama, Pd on surface-modified NiFe2O4 nanoparticles: a magnetically recoverable catalyst for Suzuki and Heck reactions, Org. Lett. 9 (2007) 1419-1421.

    3. [3]

      [3] S. Laurent, D. Forge, M. Port, et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064-2110.

    4. [4]

      [4] C.T. Yavuz, J.T. Mayo, W.W. Yu, et al., Low-field magnetic separation of monodisperse Fe3O4 nanocrystals, Science 314 (2006) 964-967.

    5. [5]

      [5] K.T.S. Alexander, L.G. Robin, Simple preparation and application of TEMPO-coated Fe3O4 superparamagnetic nanoparticles for selective oxidation of alcohols, Chem. Eur. J. 16 (2010) 12718-12726.

    6. [6]

      [6] R. Abu-Reziq, H. Alper, D. Wang, M.L. Post, Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts, J. Am. Chem. Soc. 128 (2006) 5279-5282.

    7. [7]

      [7] V. Polshettiwar, R. Luque, A. Fihri, et al., Magnetically recoverable nanocatalysts, Chem. Rev. 111 (2011) 3036-3075.

    8. [8]

      [8] B. Karimi, E. Farhangi, Highly recyclable magnetic core-shell nanoparticle-supported TEMPO catalyst for efficient metal-and halogen-free aerobic oxidation of alcohols in water, Chem. Eur. J. 17 (2011) 6056-6060.

    9. [9]

      [9] Y.H. Liu, J. Deng, J.W. Gao, Z.H. Zhange, Triflic acid-functionalized silica-coated magnetic nanoparticles as a magnetically separable catalyst for synthesis of gemdihydroperoxides, Adv. Synth. Catal. 354 (2012) 441-447.

    10. [10]

      [10] H. Yang, G. Li, Z. Ma, Magnetic core-shell-structured nanoporous organosilica microspheres for the Suzuki-Miyaura coupling of aryl chlorides: improved catalytic activity and facile catalyst recovery, J. Mater. Chem. 22 (2012) 6639-6648.

    11. [11]

      [11] H. Yang, Y. Wang, Y. Qin, et al., One-pot preparation of magnetic N-heterocyclic carbene-functionalized silica nanoparticles for the Suzuki-Miyaura coupling of aryl chlorides: improved activity and facile catalyst recovery, Green Chem. 13 (2011) 1352-1361.

    12. [12]

      [12] Y. Xia, Z.N. Yang, M. Hour, et al., Antitumor agents. Part 204: synthesis and biological evaluation of substituted 2-aryl quinazolinones, Bioorg. Med. Chem. Lett. 11 (2001) 1193-1196.

    13. [13]

      [13] R.J. Abdel-Jalil, W. Volter, M.A. Saeed, Novel method for the synthesis of 4(3H)-quinazolinones, Tetrahedron Lett. 45 (2004) 3475-3476.

    14. [14]

      [14] J.F. Liu, J. Lee, A.M. Dalton, et al., Microwave-assisted one-pot synthesis of 2,3-disubstituted 3H-quinazolin-4-ones, Tetrahedron Lett. 46 (2005) 1241-1244.

    15. [15]

      [15] D.J. Connolly, D. Cusack, T.P. O'Sullivan, P.J. Guiry, Synthesis of quinazolinones and quinazolines, Tetrahedron 61 (2005) 10153-10202, and references therein.

    16. [16]

      [16] M. Baghbanzadeh, P. Salehi, M. Dabiri, G. Kozehgary, Water-accelerated synthesis of novel bis-2,3-dihydroquinazolin-4-(1H)-one derivatives, Synthesis (2006) 344-3448.

    17. [17]

      [17] J.X. Chen, D.Z. Wu, F. He, et al., Gallium(Ⅲ) triflate-catalyzed one-pot selective synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones, Tetrahedron Lett. 49 (2008) 3814-3818.

    18. [18]

      [18] M. Dabiri, P. Salehi, S. Otokesh, G. Kozehgary, A.A. Mohammadi, Efficient synthesis ofmono-and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl(SO4)2·12H2O as a reusable catalyst in water and ethanol, Tetrahedron Lett. 46 (2005) 6123-6126.

    19. [19]

      [19] A. Davoodnia, S. Allameh, A.R. Fakhari, N. Tavakoli-Hoseini, Highly efficient solvent-free synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones using tetrabutylammonium bromide as novel ionic liquid catalyst, Chin. Chem. Lett. 21 (2010) 550-553.

    20. [20]

      [20] A. Rostami, A. Tavakoli, Sulfamic acid as a reusable and green catalyst for efficient and simple synthesis of 2-substituted-2,3-dihydroquinazolin-4(1H)-ones in water or methanol, Chin. Chem. Lett. 22 (2011) 1317-1320.

    21. [21]

      [21] R.Z. Qiao, B.L. Xu, Y.H. Wang, A facile synthesis of 2-substituted-2,3-dihydro-4(1H)-quinazolinones in 2,2,2-trifluoroethanol, Chin. Chem. Lett. 18 (2007) 656-658.

    22. [22]

      [22] H.R. Shaterian, A.R. Oveisi, PPA-SiO2 as a heterogeneous catalyst for efficient synthesis of 2-substituted-1,2,3,4-tetrahydro-4-quinazolinones under solventfree conditions, Chin. J. Chem. 27 (2009) 2418-2422.

    23. [23]

      [23] M. Wang, T.T. Zhang, Y. Liang, J.J. Gao, Strontium chloride-catalyzed one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones in protic media, Chin. Chem. Lett. 22 (2011) 1423-1426.

    24. [24]

      [24] M.M. Heravi, B. Baghernejad, H.A. Oskooie, Application of sulfamic acid in organic synthesis, Curr. Org. Chem. 13 (2009) 1002-1014.

    25. [25]

      [25] A. Santra, G. Guchhait, A.K. Misra, Efficient acylation and sulfation of carbohydrates using sulfamic acid, a mild, eco-friendly catalyst under organic solventfree conditions, Green Chem. 13 (2011) 1345-1351.

    26. [26]

      [26] N. Shapiro, A. Vigalok, Highly efficient organic reactions "on water", "in water", and both, Angew. Chem. Int. Ed. 120 (2008) 2891-2894.

    27. [27]

      [27] A. Rostami, J. Akradi, A highly efficient, green, rapid, and chemoselective oxidation of sulfides using hydrogen peroxide and boric acid as the catalyst under solventfree conditions, Tetrahedron Lett. 51 (2010) 3501-3503.

    28. [28]

      [28] A. Rostami, F. Ahamad-Jangi, Sulfamic acid: an efficient, cost-effective and green catalyst for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free, Chin. Chem. Lett. 22 (2011) 1029-1032.

    29. [29]

      [29] A. Khazaei, A. Rostami, F. Mantashlo, π-Toluenesulfonyl chloride as a new and effective catalyst for acetylation and formylation of hydroxyl compounds under mild conditions, Chin. Chem. Lett. 21 (2010) 14-30.

    30. [30]

      [30] A. Rostami, A. Khazaei, H.A. Alavi-Nik, Z. Toodeh-Roosta, Formylation of alcohol with Formic acid under solvent-free and neutral conditions catalyzed by free I2 or I2 generated, in situ from Fe(NO3)3·9H2O/NaI, Chin. J. Catal. 32 (2011) 60-64.

    31. [31]

      [31] M.Z. Kassaee, H. Masrouri, F. Movahedi, Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water, Appl. Catal. A: Gen. 395 (2011) 28-30.

    32. [32]

      [32] X. Liu, Z. Ma, J. Xing, H.J. Liu, Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres, Magn. Magn. Mater. 270 (2004) 1-6.

  • 加载中
    1. [1]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    2. [2]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    3. [3]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    4. [4]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    5. [5]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    6. [6]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    7. [7]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    8. [8]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    12. [12]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    15. [15]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    18. [18]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    19. [19]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    20. [20]

      Jiaxu WangJinxie ZhangXiuping WangJingying WangLina ChenJiahui CaoWei CaoSiyu LiangPing LuanKe ZhengXiao-Kun OuyangLi GaoXiaowen OuFan ZhangMeitong OuLin Mei . CaCO3-coated hollow mesoporous silica nanoparticles for pH-responsive fungicides release. Chinese Chemical Letters, 2024, 35(12): 109697-. doi: 10.1016/j.cclet.2024.109697

Metrics
  • PDF Downloads(0)
  • Abstract views(656)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return