Citation: Jalal Albadi, Azam Mansournezhad, Mohammad Darvishi-Paduk. Poly(4-vinylpyridine):As a green, efficient and commercial available basic catalyst for the synthesis of chromene derivatives[J]. Chinese Chemical Letters, ;2013, 24(3): 208-210. shu

Poly(4-vinylpyridine):As a green, efficient and commercial available basic catalyst for the synthesis of chromene derivatives

  • Corresponding author: Jalal Albadi, 
  • Received Date: 17 August 2012
    Available Online: 31 December 2012

  • Poly(4-vinylpyridine) is reported as a green, commercial available and efficient basic recyclable catalyst for the synthesis of chromene derivatives. This catalyst can be easily recovered by simple filtration and recycled up to 5 consecutive runs without any loss of its efficiency.
  • 加载中
    1. [1]

      [1] J. Weitkamp, M. Hunger, U. Rymsa, Basis catalysis on microporous and mesoporous materials: recent progress and perspectives, Micropor. Mesopor. Mater. 48 (2001) 255-270.

    2. [2]

      [2] A. Corma, V. Fornes, R.M. Martín-Aranda, H. Garcia, J. Primo, Zeolites as base catalysts: condensation of aldehydes with derivatives of malonic esters, Appl. Catal. 59 (1990) 237-248.

    3. [3]

      [3] P. Laszlo, Catalysis of organic reactions by inorganic solids, Acc. Chem. Res. 19 (1986) 121-127.

    4. [4]

      [4] A. Corma, S. Iborra, J. Primo, F. Rey, One-step synthesis of citronitril on hydrotalcite derived base catalysts, Appl. Catal. A: Gen. 114 (1994) 215-225.

    5. [5]

      [5] A. Corma, R.M. Martin-Aranda, Alkaline-substituted sepiolites as a new type of strong base catalyst, J. Catal. 130 (1991) 130-137.

    6. [6]

      [6] S. Ernst, M. Hartman, S. Sauerbeck, T. Bongers, A novel family of solid basic catalysts obtained by nitridation of crystalline microporous aluminosilicates and aluminophosphates, Appl. Catal. A: Gen. 200 (2000) 117-123.

    7. [7]

      [7] A. Shaabani, A.H. Rezayan, A. Sarvary, A. Rahmati, H.R. Khavasi, Pyridine catalyzed reaction of tetracyanoethylene and activated 1,3-dicarbonyl CH-acid compounds: A rapid and efficient synthesis of pyran annulated heterocyclic systems, Catal. Commun. 9 (2008) 1082-1086.

    8. [8]

      [8] B. Tamami, K. Parvanak-Borujeni, M. Iran, Polymer, synthesis and applications of cross-linked poly(N-bromomaleimide) in oxidation of various organic compounds, Iran, Polymer. J. 18 (2009) 191-206.

    9. [9]

      [9] M. Kidwai, S. Saxena, M.K.R. Khan, S.S. Thukral, Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents, Bioorg. Med. Chem. Lett. 15 (2005) 4295-4298.

    10. [10]

      [10] M.A. Sofan, F.M. El-Taweel, A.G.A. Elagamey, M.H. Elnagdi, Studies on cinnamonitriles: the reaction of cinnamonitriles with cyclopentanone, Liebigs Ann. Chem. (1989) 935-936.

    11. [11]

      [11] X.Y. Meng, H.J. Wang, C.P. Wang, Z.H. Zhang, Disodium hydrogen phosphate as an efficient and cheap catalyst, Synth. Commun. 41 (2011) 3477-3484.

    12. [12]

      [12] A.Q. Zhang, M. Zhang, H.H. Chen, J. Chen, H.Y. Chen, Convenient method for synthesis of substituted 2-amino-2-chromenes, Synth. Commun. 37 (2007) 231-235.

    13. [13]

      [13] H. Mehrabi, M. Kazemi-Mireki, CuO nanoparticles: an efficient and recyclable nanocatalyst for the rapid and green synthesis of 3,4-dihydropyrano[c]chromenes, Chin. Chem. Lett. 22 (2011) 1419-1422.

    14. [14]

      [14] M.R. Naimi-Jamal, S. Mashkouri, A. Sharifi, An efficient, multicomponent approach for solvent-free synthesis of 2-amino-4H-chromene scaffold, Mol. Divers. 14 (2010) 437-477.

    15. [15]

      [15] H. Eshghi, G.H. Zohouri, S. Damavandi, M. Vakili, Efficient one-pot synthesis of 1,3-diaryl-3H-benzo[f]chromenes using ferric hydrogensulfate, Chin. Chem. Lett. 21 (2010) 1423-1426.

    16. [16]

      [16] K. Gong, H.L. Wang, D. Fang, Z.L. Liu, Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media, Catal. Commun. 9 (2008) 650-653.

    17. [17]

      [17] Y.M. Ren, C. Cai, Convenient and efficient method for synthesis of substituted 2-amino-2-chromenes using catalytic amount of iodine and K2CO3 in aqueous medium, Catal. Commun. 9 (2008) 1017-1020.

    18. [18]

      [18] L. Chen, X.J. Huang, Y.Q. Li, M.Y. Zho, W.J. Zheng, A one-pot multicomponent reaction for the synthesis of 2-amino-2-chromenes promoted by N,N-dimethylamino-functionalized basic ionic liquid catalysis under solvent-free condition, Monatsh. Chem. 140 (2009) 45-47.

    19. [19]

      [19] R.A. Mekheirmer, K.U. Sadek, Microwave-assisted reactions: three-component process for the synthesis of 2-amino-2-chromenes under microwave heating, Chin. Chem. Lett. 20 (2009) 271-274.

    20. [20]

      [20] J.M. Khurana, B. Nand, P. Saluja, DBU: a highly efficient catalyst for one-pot synthesis of substituted 3,4-dihydropyrano[3,2-c]chromenes, dihydropyrano[4,3-b]pyranes, 2-amino-4Hbenzo[h]chromenes and 2-amino-4H benzo[g]-chromenes in aqueous medium, Tetrahedron. 66 (2010) 5637-5641.

    21. [21]

      [21] S. Samantaray, D.K. Pradhan, G. Hota, B.G. Mishra, Catalytic application of CeO2-CaO nanocomposite oxide synthesized using amorphous citrate process toward the aqueous phase one pot synthesis of 2-amino-2-chromenes, Chem. Eng. J. 19 (2012) 1-9.

    22. [22]

      [22] Z.Q. Ya, S.D. Qing, T.S. Jing, W.X. Shan, One-pot synthesis of 2-amino-3-cyano-4-aryl-4H-benzo[h]chromenes, Chin. J. Appl. Chem. 19 (2002) 1018-1020.

    23. [23]

      [23] L.Y. Zeng, M.F. Lv, C. Cai, Iodine catalyzed synthesis of the chromene derivatives in one-pot, Chin. Chem. Lett. 32 (2012) 1347-1351.

    24. [24]

      [24] J. Banothu, R. Bavanthula, Brønsted acidic ionic liquid catalyzed highly efficient synthesis of chromeno pyrimidinone derivatives and their antimicrobial activity, Chin. Chem. Lett. 23 (2012) 1015-1018.

    25. [25]

      [25] I. Mohammadzadeh, H. Sheibani, A convenient one-pot synthesis of new chromeno[3,4-c]chromene and chromeno[3,4-c]pyridine derivatives in the presence of high surface area of magnesium oxide, Chin. Chem. Lett. 23 (2012) 1327-1330.

  • 加载中
    1. [1]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    2. [2]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    3. [3]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    4. [4]

      Shuo LiXinran LiuYongjie ZhengJun MaShijie YouHeshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971

    5. [5]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    6. [6]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    7. [7]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    8. [8]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2024.100191

    9. [9]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    10. [10]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    11. [11]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    12. [12]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    13. [13]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    14. [14]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    15. [15]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    16. [16]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    17. [17]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    18. [18]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    19. [19]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    20. [20]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2024.100199

Metrics
  • PDF Downloads(0)
  • Abstract views(687)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return