Citation: Abolfazl Ziarati, Javad Safaei-Ghomi, Sahar Rohani. Pseudo five-component process for the synthesis of functionalized tricarboxamides using CuI nanoparticles as reusable catalyst[J]. Chinese Chemical Letters, ;2013, 24(3): 195-198. shu

Pseudo five-component process for the synthesis of functionalized tricarboxamides using CuI nanoparticles as reusable catalyst

  • Corresponding author: Javad Safaei-Ghomi, 
  • Received Date: 12 November 2012
    Available Online: 16 January 2013

  • An efficient and multicomponent method has been developed for the synthesis of functionalized tricarboxamides at room temperature using CuI nanoparticles as catalyst. This method involved fivecomponent coupling reactions of Meldrum's acid, isocyanides with aromatic aldehydes and amines at room temperature. Atom economy, wide range of products, excellent yields in short time and mild reaction conditions are some of the important features of this protocol. Notably, this catalyst could be recycled and reused for several times without significantly decreasing the catalytic activity.
  • 加载中
    1. [1]

      [1] A. Basso, L. Banfi, R. Riva, G. Guanti, A novel highly selective chiral auxiliary for the asymmetric synthesis of L-and D-a-amino acid derivatives via a multicomponent Ugi ueaction, J. Org. Chem. 70 (2005) 575-579.

    2. [2]

      [2] D.J. Ramón, M. Yus, Asymmetric multicomponent reactions (AMCRs): the new frontier, Angew. Chem. Int. Ed. 44 (2005) 1602-1634.

    3. [3]

      [3] V. Nair, C. Rajesh, A.U. Vinod, et al., Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes, Acc. Chem. Res. 36 (2003) 899-907.

    4. [4]

      [4] W.G. Yi, Z.Y. Jia, N.B. Li, et al., Zirconocene bis(perfluorooctanesulfonate)s-catalyzed the reaction of indoles and carbonyl compounds, Chin. J. Org. Chem. 32 (2012) 2390-2393.

    5. [5]

      [5] C. Ma, Y. Yang, Thiazolium-mediated multicomponent reactions: a facile synthesis of 3-aminofuran derivatives, Org. Lett. 7 (2005) 1343-1345.

    6. [6]

      [6] Y. Cheng, O. Meth-Cohn, Heterocycles derived from heteroatom-substituted carbenes, Chem. Rev. 104 (2004) 2507-2530.

    7. [7]

      [7] H. Anaraki-Ardakani, M. Noei, A. Tabarzad, Facile synthesis of N-(arylsulfonyl)-4-ethoxy-5-oxo-2,5-dihydro-1H-pyrolle-2,3-dicarboxylates by one-pot three-component reaction, Chin. Chem. Lett. 23 (2012) 45-48.

    8. [8]

      [8] A. Domling, Recent developments in isocyanide based multicomponent reactions in applied chemistry, Chem. Rev. 106 (2006) 17-89.

    9. [9]

      [9] A. Domling, I. Ugi, Multicomponent reactions with isocyanides, Angew. Chem. Int. Ed. 39 (2000) 3169-3210.

    10. [10]

      [10] A. Shaabani, A. Maleki, A.H. Rezayan, A. Sarvary, Recent progress of isocyanidebased multicomponent reactions in Iran, Mol. Divers. 15 (2011) 41-68.

    11. [11]

      [11] S. Sadjadi, M.M. Heravi, Recent application of isocyanides in synthesis of heterocycles, Tetrahedron 67 (2011) 2707-2752.

    12. [12]

      [12] A.V. Ivachtchenko, Y.A. Ivanenkov, V.M. Kysil, et al., Multicomponent reactions of isocyanides in the synthesis of heterocycles, Russ. Chem. Rev. (Engl. Transl.) 79 (2010) 787-817.

    13. [13]

      [13] J.L. Wang, D. Liu, Z.J. Zheng, et al., Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 7124-7129.

    14. [14]

      [14] K. Strom, J. Sjogren, A. Broberg, J. Schnurer, Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phetrans-4-OH-L-Pro) and 3-phenyllactic acid, Appl. Environ. Microbiol. 68 (2002) 4322-4327.

    15. [15]

      [15] X. Tang, L. Fan, H. Yu, Y. Liao, D. Yang, Facile synthesis of dipeptidomimetics of paminobenzoic acid and their antidiabetic activity, Chin. J. Org. Chem. 29 (2009) 595-600.

    16. [16]

      [16] A.I. Faden, V.A. Movsesyan, S.M. Knoblach, F. Ahmed, I. Cernak, Neuroprotective effects of novel small peptides in vitro and after brain injury, Neuropharmacology 49 (2005) 410-424.

    17. [17]

      [17] C.B. Cui, H. Kakeya, H. Osada, Novel mammalian cell cycle inhibitors, cyclotroprostatins A-D, produced by Aspergillus fumigatus, which inhibit mammalian cell cycle at G2/M phase, Tetrahedron 53 (1997) 59-72.

    18. [18]

      [18] M.B. Teimouri, P. Akbari-Moghaddam, G. Golbaghi, Pseudo-five-component reaction between 3-formylchromones, Meldrum's acid, isocyanides and primary arylamines: diversity-oriented synthesis of novel chromone-containing peptidomimetics, ACS Comb. Sci. 13 (2011) 659-666.

    19. [19]

      [19] A. Shaabani, M.B. Teimouri, A. Bazgir, H.R. Bijanzadeh, Introducing a novel class of four-component reactions, Mol. Divers. 6 (2003) 199-206.

    20. [20]

      [20] M.B. Teimouri, P. Akbari-Moghaddam, An efficient one-pot method for the synthesis of novel ferroceneetriamide conjugates via pseudo five-component reaction, Tetrahedron 67 (2011) 5928-5934.

    21. [21]

      [21] A. Shaabani, M. Seyyedhamzeh, A. Maleki, M. Behnam, F. Rezazadeh, Synthesis of fully substituted pyrazolo[3,4-b]pyridine-5-carboxamide derivatives via a onepot four-component reaction, Tetrahedron Lett. 50 (2009) 2911-2913.

    22. [22]

      [22] F. Cagide, J. Reis, A. Gaspar, F. Borges, Accelerating lead optimization of chromone carboxamide scaffold throughout microwave-assisted organic synthesis, Tetrahedron Lett. 52 (2011) 6446-6449.

    23. [23]

      [23] N. Koukabi, E. Kolvari, A. Khazaei, et al., Hantzsch reaction on free nano-Fe2O3 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability, Chem. Commun. 47 (2011) 9230-9232.

    24. [24]

      [24] S. Shylesh, V. Schunemann, W.R. Thiel, Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed. 49 (2010) 3428-3459.

    25. [25]

      [25] M.Z. Kassaee, R. Mohammadi, H. Masrouri, et al., Nano TiO2 as a heterogeneous catalyst in an efficient one-pot three-component Mannich synthesis of β-aminocarbonyls, Chin. Chem. Lett. 22 (2011) 1203-1206.

    26. [26]

      [26] A. Teimouri, A. Najafi Chermahini, One-pot green synthesis of pyrrole derivatives catalyzed by nano sulfated zirconia as a solid acid catalyst, Chin. J. Chem. 30 (2012) 372-376.

    27. [27]

      [27] M. Nikpassand, L. Zare, T. Shafaati, S. Shariati, Regioselective synthesis of fused azo-linked pyrazolo[4,3-e]pyridines using nano-Fe3O4, Chin. J. Chem. 30 (2012) 604-608.

    28. [28]

      [28] J. Safaei-Ghomi, A. Ziarati, R. Teymuri, CuI nanoparticles as new, efficient and reusable catalyst for the one-pot synthesis of 1,4-dihydropyridines, Bull. Korean Chem. Soc. 33 (2012) 2679-2682.

    29. [29]

      [29] H.J. Xu, Y.F. Liang, X.F. Zhou, Y.S. Feng, Efficient recyclable CuI-nanoparticlecatalyzed S-arylation of thiols with aryl halides on water under mild conditions, Org. Biomol. Chem. 10 (2012) 2562-2568.

    30. [30]

      [30] J. Safaei-Ghomi, A. Ziarati, S. Zahedi, Ferric chloride supported on nano silica as a reusable heterogeneous catalyst for the one-pot synthesis of 1,4-dihydropyridines under mild conditions, J. Chem. Sci. 124 (2012) 933-939.

    31. [31]

      [31] J. Safaei-Ghomi, A. Ziarati, An efficient FeCl3/SiO2 NPs as a reusable heterogeneous catalyzed five-component reactions of tetrahydropyridines under mild conditions, J. Iran Chem. Soc. 10 (2013) 135-139.

    32. [32]

      [32] J. Safaei-Ghomi, M.A. Ghasemzadeh, Zinc oxide nanoparticles: a highly efficient and readily recyclable catalyst for the synthesis of xanthenes, Chin. Chem. Lett. 23 (2012) 1225-1229.

    33. [33]

      [33] V. Nair, R.S. Menon, A.U. Vinod, S.A. Viji, A facile three-component reaction involving [1+4] cycloaddition leading to furan annulated heterocycles, Tetrahedron Lett. 43 (2002) 2293-2295.

    34. [34]

      [34] A. Shaabani, S. Ajabi, F. Farrokhzad, H.R. Bijanzadeh, [1+4] Cycloaddition of isocyanides with 2-acetyl-1,4-benzoquinone; a conveient synthesis of isobenzofuran-4,7-quinones, J. Chem. Res. (1999) 582-583.

    35. [35]

      [35] B.C. Chen, Meldrum's acid in organic synthesis, Heterocycles 32 (1991) 529-597.

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Wei-Tao DouQing-Wen ZengYan KangHaidong JiaYulian NiuJinglong WangLin Xu . Construction and application of multicomponent fluorescent droplets. Chinese Chemical Letters, 2025, 36(1): 109995-. doi: 10.1016/j.cclet.2024.109995

    3. [3]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    4. [4]

      Yanqiong WangYaqi HouFengwei HuoXu Hou . Fe3+ ion quantification with reusable bioinspired nanopores. Chinese Chemical Letters, 2025, 36(2): 110428-. doi: 10.1016/j.cclet.2024.110428

    5. [5]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    6. [6]

      Shehla KhalidMuhammad BilalNasir RasoolMuhammad Imran . Photochemical reactions as synthetic tool for pharmaceutical industries. Chinese Chemical Letters, 2024, 35(9): 109498-. doi: 10.1016/j.cclet.2024.109498

    7. [7]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    8. [8]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    9. [9]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    10. [10]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    11. [11]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    12. [12]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    13. [13]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    14. [14]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2024.100191

    15. [15]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    16. [16]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    17. [17]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

    18. [18]

      Xiao-Ya YuanCong-Cong WangBing Yu . Recent advances in FeCl3-photocatalyzed organic reactions via hydrogen-atom transfer. Chinese Chemical Letters, 2024, 35(9): 109517-. doi: 10.1016/j.cclet.2024.109517

    19. [19]

      Yanhua PengXin YuTing Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198

    20. [20]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

Metrics
  • PDF Downloads(0)
  • Abstract views(735)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return