Citation: Barahman Movassagh, Mona Moradi. One-pot synthesis of selenocarbamates from isocyanates and diselenides using the Zn/AlCl3 system[J]. Chinese Chemical Letters, ;2013, 24(3): 192-194. shu

One-pot synthesis of selenocarbamates from isocyanates and diselenides using the Zn/AlCl3 system

  • Corresponding author: Barahman Movassagh, 
  • Received Date: 29 November 2012
    Available Online: 16 January 2013

  • Several N-alkyl/aryl-Se-alkyl/(aryl)selenocarbamates were prepared from various isocyanates and diselenides by reductive cleavage of Se-Se bond with the Zn/AlCl3 system in dry acetonitrile at 80℃.
  • 加载中
    1. [1]

      [1] (a) T.G. Back, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of Organic Selenium and Tellurium Compounds, vol. 2, John Wiley and Sons, Chichester, 1987;

    2. [2]

      (b) A. Krief, in: E.W. Abel, F.G.A. Stone, G. Wilkinson, A. McKillop (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1995, p. 518;

    3. [3]

      (c) C. Paulmier, in: J.E. Baldwin (Ed.), Selenium Reagents and Intermediates in Organic Synthesis, Pergamon Press, Oxford, 1986.

    4. [4]

      [2] (a) A. Ogawa, N. Sonoda, Synthetic utility of selenium-carbon monoxide-water reaction system, Rev. Heteroat. Chem. 10 (1994) 43-60;

    5. [5]

      (b) A. Ogawa, N. Sonoda, in: B.M. Trost, I. Fleming (Eds.), Comprehensive Organic Synthesis, Pergamon Press, Oxford, 1991, p. 461;

    6. [6]

      (c) T.G. Back, Organoselenium Chemistry: A Practical Approach, Oxford University Press, Oxford, 1999.

    7. [7]

      [3] (a) Y. Kumar, R. Green, D.S. Wise, et al., Synthesis of 2,4-disubstituted thiazoles and selenazoles as potential antifilarial and antitumor agents. 2. 2-Arylamido and 2-alkylamido derivatives of 2-amino-4-(isothiocyanatomethyl)thiazole and 2-amino-4-(isothiocyanatomethyl)selenazole, J. Med. Chem. 36 (1993) 3849-3852;

    8. [8]

      (b) Y. Kumar, R. Green, K.Z. Borysko, et al., Synthesis of 2,4-disubstituted thiazoles and selenazoles as potential antitumor and antifilarial agents. 1. Methyl 4-(isothiocyanatomethyl)thiazole-2-carbamates, -selenazole-2-carbamates, and related derivatives, J. Med. Chem. 36 (1993) 3843-3848;

    9. [9]

      (c) M. Koketsu, H. Ishihara, W. Wu, et al., 1,3-Selenazine derivatives induce cytotoxicity and DNA fragmentation in human HT-1080 fibrosarcoma cells, Eur. J. Pharm. Sci. 9 (1999) 157-161;

    10. [10]

      (d) C.W. Noguira, G. Zeni, J.B.T. Rocha, Organoselenium and organotellurium compounds: toxicology and pharmacology, Chem. Rev. 104 (2004) 6255-6285;

    11. [11]

      (e) G. Mugesh, W.W. du Mont, H. Sies, Chemistry of biologically important synthetic organoselenium compounds, Chem. Rev. 101 (2001) 2125-2180.

    12. [12]

      [4] (a) Y.N. Klimochkin, I.K. Moiseev, O.V. Abramov, et al., Synthesis and antiviral activity of sulfur-containing derivatives of adamantine, Pharm. Chem. J. 25 (1991) 489-490;

    13. [13]

      (b) H. Takahashi, A. Nishina, R. Fukumoto, et al., Selenocarbamates are effective superoxide anion scavengers in vitro, Eur. J. Pharm. Sci. 24 (2005) 291-295.

    14. [14]

      [5] A.G.M. Barrett, H. Kwon, E.M. Wallace, The conversion of carboxylic acids into isonitriles via selenium-phenyl selenocarbamates, J. Chem. Soc. Chem. Commun. (1993) 1760-1761.

    15. [15]

      [6] M. Toyofuku, S.I. Fujiwara, T. Shin-ike, et al., Palladium-catalyzed intramolecular selenocarbamoylation of alkynes with carbamoselenoates: formation of α-alkylidene-β-lactam framework, J. Am. Chem. Soc. 127 (2005) 9706-9707.

    16. [16]

      [7] J.H. Rigby, D.M. Danca, J.H. Horner, Carbamoyl radicals from Se-phenylselenocarbamates: intramolecular additions to alkenes, Tetrahedron Lett. 39 (1998) 8413-8416.

    17. [17]

      [8] (a) K. Kondo, M. Takarada, S. Murai, et al., Synthesis of selenocarbamates, Synthesis (1979) 597-598;

    18. [18]

      (b) S.I. Fujiwara, K. Okada, Y. Shikano, et al., N-carbonylation of lithium azaenolates of amides, formamides, ureas and carbamates with carbon monoxide mediated by selenium, J. Org. Chem. 72 (2007) 273-276.

    19. [19]

      [9] W.A. Reinerth, J.M. Tour, Protecting groups for organoselenium compounds, J. Org. Chem. 63 (1998) 2397-2400.

    20. [20]

      [10] H. Kagayama, K. Tani, S. Kato, et al., Acyl carbamoyl selenides and related sulfur isologues: synthesis and X-ray structural analysis, Heteroatom Chem. 12 (2001) 250-258.

    21. [21]

      [11] K. Shimada, S. Oikawa, H. Nakamura, et al., A preparation of alkyl or alkenyl N,Ndimethylchalcogenocarbamates and their one-step conversion into symmetrical dialkyl or dialkenyl dichalcogenides, Bull. Chem. Soc. Jpn. 78 (2005) 899-905.

    22. [22]

      [12] (a) H. Ishihara, M. Koketsu, Y. Fukuta, et al., Reaction of lithium aluminum hydride with elemental selenium: its application as a selenating reagent in to organic molecules, J. Am. Chem. Soc. 123 (2001) 8408-8409;

    23. [23]

      (b) M. Koketsu, M. Ishida, N. Takakura, et al., Preparation and characterization of N-alkyl-Se-alkylselenocarbamates, J. Org. Chem. 67 (2002) 486-490.

    24. [24]

      [13] (a) P. Meunier, B. Gaotheron, A. Mazouz, Convenient synthesis of new Se,Se0-disubstituted derivatives of benzene-1,2-diselenol, J. Chem. Soc. Chem. Commun. (1986) 424-425;

    25. [25]

      (b) A. Osuka, N. Ohmasa, H. Suzuki, A simple synthesis of unsymmetrical diaryl selenides from copper(Ⅰ) areneselenolates and aryl iodides, Synthesis (1982) 857-858;

    26. [26]

      (c) W. Bao, Y. Zhang, Six membered ring opening of isopropylidene malonate derivatives: synthesis of α,β-unsaturated thio-and selenoaryl carboxylic esters, Synth. Commun. 25 (1995) 143-148.

    27. [27]

      [14] (a) B. Movassagh, A. Tatar, Zn/RuCl3-promoted cleavage of diselenides: an efficient Michael addition of zinc selenolates to conjugated alkenes in aqueous media, Synlett (2007) 1954-1956;

    28. [28]

      (b) B. Movassagh, F. Mirshojaei, Synthesis of selenol esters from acid chlorides and organic diselenides in the presence of the Zn/AlCl3 system, Monatsh. Chem. 134 (2003) 831-835;

    29. [29]

      (c) B. Movassagh, M. Shamsipoor, Zinc-mediated cleavage of diselenides: a novel synthesis of unsymmetrical diorganyl selenides in aqueous media, Synlett (2005) 121-122;

    30. [30]

      (d) B. Movassagh, M. Shamsipoor, Stereo-and regioselective zinc-mediated ringopening of epoxides with diselenides, Synlett (2005) 1316-1318;

    31. [31]

      (e) B. Movassagh, A. Fazeli, Zinc-mediated cleavage of diselenides: a novel synthesis of selenoformates in aqueous media, Monatsh. Chem. 138 (2007) 863-865;

    32. [32]

      (f) X. Zhao, Z. Yu, S. Yan, et al., Ruthenium(Ⅲ) chloride catalyzed efficient synthesis of unsymmetrical diorganyl selenides via cleavage of dibenzyl and diphenyl diselenides in the presence of zinc, J. Org. Chem. 70 (2005) 7338-7341;

    33. [33]

      (g) A.L. Braga, P.H. Schneider, M.W. Paixão, et al., Efficient synthesis of diorganyl selenides via cleavage of Se-Se bond of diselenides by indium(Ⅲ) catalyst and zinc, Tetrahedron Lett. 47 (2006) 7195-7198.

    34. [34]

      [15] T.G. Back, R.G. Kerr, Reaction of diazomethane with selenoesters: preparation of α-(alkyl-or arylseleno)methyl ketones and methyl ketones, Tetrahedron 41 (1985) 4759-4764.

  • 加载中
    1. [1]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    2. [2]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    3. [3]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    6. [6]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    9. [9]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    10. [10]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    11. [11]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    12. [12]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    13. [13]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    14. [14]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    15. [15]

      Yang LiXiaoxu LiuTianyi JiMan ZhangXueru YanMengjie YaoDawei ShengShaodong LiPeipei RenZexiang Shen . Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109551-. doi: 10.1016/j.cclet.2024.109551

    16. [16]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    17. [17]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    18. [18]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    19. [19]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    20. [20]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

Metrics
  • PDF Downloads(0)
  • Abstract views(623)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return