Citation: Ying Nie, Yin Sun, Qi-Dong You. Synthesis and antibacterial activity of novel 10, 11-epoxy acylide erythromycin derivatives[J]. Chinese Chemical Letters, ;2013, 24(3): 183-185. shu

Synthesis and antibacterial activity of novel 10, 11-epoxy acylide erythromycin derivatives

  • Corresponding author: Qi-Dong You, 
  • Received Date: 21 January 2013
    Available Online: 4 February 2013

  • A series of novel acylide derivatives have been synthesized from clarithromycin A via a facile procedure. The C-3 modifications involved replacing the natural C-3 cladinosyl group in clarithromycin core with different aryl-piperzine sidechain via chemical synthesis. Meanwhile a distinctive intermediate with 10,11-epoxy moiety was obtained. The structure and stereochemistry of this novel structure were confirmed via NMR and X-ray crystallography. Potential anti-bacterial activities against both Grampositive and Gram-negative bacteria were reported. Because of existence of C10,11-epoxide, these derivatives can be used as intermediates for further structural modification.
  • 加载中
    1. [1]

      [1] P. Kurath, P. Jones, R. Egan, et al., Acid degradation of erythromycin A and erythromycin B, Experentia 27 (1971) 362.

    2. [2]

      [2] K. Krowick, A. Zamojski, Chemical modification of erythromycin I. 8,9-anhydro-69-hemiketal of A, J. Antibiot. 26 (1973) 569-574.

    3. [3]

      [3] R. Leclercq, Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications, Clin. Infect. Dis. 34 (2002) 482-492.

    4. [4]

      [4] J.C. Pechere, Macrolide resistance mechanisms in Gram-positive cocci, Int. J. Antimicrob. Agents 18 (2001) S25-S28.

    5. [5]

      [5] T. Tanikawa, T. Asaka, M. Kashimura, et al., Synthesis and antibacterial activity of a novel series of acylides: 3-O-(3-pyridyl) acetylerythromycin A derivatives, J. Med. Chem. 46 (2003) 2706-2715.

    6. [6]

      [6] T. Ly, S. Yat, M. Zhenkun, 6-O-alkyl-2-nor-2-substituted ketolide derivatives, U.S. Patent. 0103140 (2002).

    7. [7]

      [7] A.K. Ghosh, K. Jae-Hun, An enantioselective synthesis of the C1 C9 segment of antitumor macrolide peloruside A, Tetrahedron Lett. 44 (2003) 3967-3969.

    8. [8]

      [8] Selected characteristic data for the compounds. 9: Yellow powder; mp 91-93℃, IR (KBr, cm-1): v 1706, 1729, 1748; 1H NMR (300 MHz, CDCl3): δ7.28-7.40 (m, 5H, Ph-H), 5.03 (dd, 1 H, J = 2.3 Hz and 9.2 Hz, H13), 4.69 (dd, 1 H, J = 2.3 Hz and 8.2 Hz, H2), 3.10 (s, 3H, C6-OCH3), 1.88 (s, 3H, C20-OCOCH3), 1.66 (s, 3H, C10-CH3); ESI-MS m/z (%): 772 (M+Na+). X-ray analysis: C39H59NO13, Mr = 749.90, crystal size 0.586 mm×0.173 mm×0.049 mm, orthorhombic in p21/n with a = 14.024(3), b = 28.998(6), c = 10.915(2)Å, a, b, g = 90°, V = 3185.0(9)Å3, Dcalu = 1.151 Mg/m3, and Z = 4, absorption coefficient 0.087 mm-1, computing structure solution SHELXL-97, theta range for data collection 1.61 to 25.508, limiting indices -16≤h≤10,-35≤k≤19,-13≤l≤12, reflection collected 23690, refinement method full-matrix least-squares, final R indices [I > 2 sigma (I)] R1 = 0.1016, wR2 = 0.2461, R indices (all data) R1 = 0.2601, wR2 = 0.3102, goodness-of-fit on F2 0.894, largest difference peak 0.360 eAÅ3, largest difference hole 0.236 eÅ3. 14a: White crystal; mp 127-129℃, IR (KBr, cmÅ-1): v 1165, 1706, 1741; 1H NMR (300 MHz, CDCl3): δ 7.09-7.28 (m, 5H, Ph-H), 5.01 (dd, 1 H, J = 2.4 Hz and 10.4 Hz, H13), 3.23 (s, 3H, C6-OCH3), 3.18 (m, 4H, 2 CH2 in piperazinyl), 2.65 (m, 6H, 2 CH2 in piperazinyl and CH2N), 2.39 (s, 6H, N(CH3)2), 1.64 (s, 3H, C10-OCH3); ESI-MS m/z (%): 803 (M+H+). 14b: White crystal; mp 117-119℃, IR (KBr, cm-1): v 1164, 1512, 1741; 1H NMR(300 MHz, CDCl3): δ 6.81-7.27 (m, 4H, Ph-H), 5.01 (dd, 1 H, J = 2.3 Hz and 10.3 Hz, H13), 3.76 (s, 3H, Ar-OCH3), 3.12 (s, 3H, C6-OCH3), 3.07 (m, 4H, 2 CH2 in piperazinyl), 2.68 (m, 6H, 2 CH2 in piperazinyl and CH2N), 2.46 (s, 6H, N(CH3)2), 1.62 (s, 3H, C10-CH3); ESI-MS m/z (%): 833 (M+H+). 14c: White crystal; mp 105-106℃, IR (KBr, cm-1): y 1164, 1741; 1H NMR (300 MHz, CDCl3): δ 6.81-7.27 (m, 4H, Ph-H), 5.01 (dd, 1 H, J = 2.7 Hz and 10.5 Hz, H13), 3.22 (s, 3H, C6-OCH3), 3.15 (m, 4H, 2 CH2 in piperazinyl), 2.63 (m, 6H, 2 CH2 in piperazinyl and CH2N), 2.38 (s, 6H, N(CH3)2), 2.17 (s, 3H, Ar-CH3), 1.65 (s, 3H, C10-OCH3); ESI-MS m/z (%): 817 (M+H+). 14d: White crystal; mp 112-113℃, IR (KBr, cm-1): v 1164, 1742; 1H NMR (300 MHz, CDCl3): δ 7.03-7.37 (m, 4H, Ph-H), 5.01 (dd, 1 H, J = 6.5 Hz and 14.0 Hz, H13), 3.24 (s, 3H, C6-OCH3), 3.11 (m, 4H, 2 CH2 in piperazinyl), 2.66 (m, 6H, 2 CH2 in piperazinyl and CH2N), 2.40 (s, 6H, N(CH3)2), 1.65 (s, 3H, C10-OCH3); ESI-MS m/z (%): 871 (M+H+). 14e: White crystal; mp 114-116℃, IR (KBr, cm-1): v 1164, 1742; 1H NMR (300 MHz, CDCl3): δ 6.90-7.45 (m, 4H, Ph-H), 5.00 (dd, 1 H, J = 2.4 Hz and 10.3 Hz, H13), 3.23 (s, 3H, C6-OCH3), 3.14 (m, 4H, 2 CH2 in piperazinyl), 2.82 (m, 6H, 2 CH2 in piperazinyl and CH2N), 2.29 (s, 6H, N(CH3)2), 1.64 (s, 3H, C10-OCH3); ESI-MS m/z (%): 821 (M+H+). 14f: White crystal; mp 124-125℃, IR (KBr, cm-1): v 1163, 1742; 1H NMR (300 MHz, CDCl3): δ 6.95-7.18 (m, 4H, Ph-H), 5.00 (dd, 1 H, J = 2.2 Hz and 10.2 Hz, H13), 3.24 (s, 3H, C6-OCH3), 3.19 (m, 4H, 2 CH2 in piperazinyl), 2.83 (m, 6H, 2 CH2 in piperazinyl and CH2N), 2.29 (s, 9H, Ph-CH3 and N(CH3)2), 1.63 (s, 3H, C10-OCH3); ESI-MS m/z (%): 817 (M+H+). 14g: White crystal; mp 134-136℃, IR (KBr, cm-1): v 1164, 1741; 1H NMR (300 MHz, CDCl3): δ 6.87-7.02 (m, 4H, Ph-H), 5.00 (dd, 1 H, J = 2.7 Hz and 10.1 Hz, H13), 3.86 (s, 3H, Ph-OCH3), 3.23 (s, 3H, C6-OCH3), 3.15 (m, 4H, 2 CH2 in piperazinyl), 2.69 (m, 6H, 2 CH2 in piperazinyl and CH2N), 2.31 (s, 6H, N(CH3)2), 1.64 (s, 3H, C10-OCH3); ESI-MS m/z (%): 833 (M+H+). 14h: White crystal; mp 99-107℃, IR (KBr, cm-1): v 1165, 1741; 1H NMR (300 MHz, CDCl3): δ 8.18 (d, 1 H, Pyr-H6), 7.47 (t, 1 H, Pyr-H4), 6.63 (t, 2H, Pyr-H3, Pyr-H5), 5.00 (dd, 1 H, J = 3.7 Hz and 8.9 Hz, H13), 3.22 (s, 3H, C6-OCH3), 3.18 (m, 4H, 4H, 2 2 in piperazinyl), 2.61 (m, 6H, 2 CH2 in piperazinyl and CH2N), 2.41 (s, 6H, N(CH3)2), 1.65 (s, 3H, C10-OCH3); ESI-MS m/z (%): 842 (M+H+). 14i: White crystal; mp 100-102℃, IR (KBr, cm-1): v 1164, 1742; 1H NMR (300 MHz, CDCl3): δ 6.90-6.99 (m, 3H, Ph-H), 5.00 (dd, 1 H, J = 2.7 Hz and 10.1 Hz, H13), 3.23 (s, 3H, C6-OCH3), 3.11 (m, 4H, 2 CH2 in piperazinyl), 2.66 (m, 6H, 2 CH2 in piperazinyl and CH2N), 2.26 (s, 6H, N(CH3)2), 2.25 (s, 3H, Ph-CH3), 2.22 (s, 3H, Ph-CH3), 1.65 (s, 3H, C10-OCH3); ESI-MS m/z (%): 832 (M+H+). 14j: White crystal; mp 114-115℃, IR (KBr, cm-1): y 1165, 1741; 1H NMR (300 MHz, CDC13): δ 6.80-7.07 (m, 3H, Ph-H), 5.00 (dd, 1 H, J = 2.7 Hz and 10.1 Hz, H13), 3.22 (s, 3H, C6-OCH3), 3.14 (m, 4H, 2 CH2 in piperazinyl), 2.65 (m, 6H, 2 CH2 in piperazinyl and CH2N), 2.31 (s, 6H, N(CH3)2), 2.24 (s, 3H, Ph-CH3), 2.21 (s, 3H, Ph-CH3), 1.65 (s, 3H, C10-OCH3); ESI-MS m/z (%): 832 (M+H+).

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    3. [3]

      Zhengyi ShiJie YinYang XiaoZhangrong HouFei SongJianping WangQingyi TongChangxing QiYonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458

    4. [4]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    5. [5]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    6. [6]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    7. [7]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    8. [8]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    9. [9]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    10. [10]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    11. [11]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    12. [12]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    13. [13]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    14. [14]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    15. [15]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    16. [16]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    17. [17]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    18. [18]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    19. [19]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    20. [20]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

Metrics
  • PDF Downloads(0)
  • Abstract views(630)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return