Citation: Rajanarendar Eligeti, Kishore Baireddy, Ramakrishna Saini. DABCO-promoted facile and convenient synthesis of novel isoxazolyl-1H-2,3-pyrrole dicarboxylates[J]. Chinese Chemical Letters, ;2013, 24(2): 134-136.
-
Synthesis of isoxazolyl-1H-2,3-pyrrole dicarboxylate (4) was simply achieved by one-pot three component reaction of isoxazole amine (1) with diethyl acetylenedicarboxylate (DEAD) (2), and glyoxal (3), in acetonitrile catalyzed by diazabicyclo octane (DABCO).
-
-
[1]
[1] B.A. Trofimov, The Chemistry of Heterocyclic Compounds. Part 2: Pyrroles, in: R.A. Jones (Ed.), Vinylpyrroles, Wiley, New York, 1992.
-
[2]
[2] T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds (Eds.), Handbook of Conducting Polymers, 2nd ed., Marcel Dekker, New York, 1998.
-
[3]
[3] P. Cozzi, N. Mongelli, Cytotoxics derived from distamycin A and congeners, Curr. Pharm. Des. 4 (1998) 181-194.
-
[4]
[4] A. Furstner, H. Szillat, B. Gabor, R.J. Mynott, Platinum-and acid-catalyzed enyne metathesis reactions mechanistic studies and applications to the syntheses of streptorubin B and metacyclo-prodigiosin, J. Am. Chem. Soc. 120 (1998) 8305-8314.
-
[5]
[5] (a) D.L. Boger, C.W. Boyce, M.A. Labroli, C.A. Sehon, Q. Jin, Total syntheses of ningalin A, lamellarin O, lukianol A and permethyl storniamide A utilizing heterocyclic azadiene Diels-Alder reactions, J. Am. Chem. Soc. 121 (1999) 54-62;
-
[6]
(b) M. Abid, S.M. Landge, B. Torok, An efficient and rapid synthesis of N-substitued pyrroles by microwave assisted solid acid catalysis, Org. Prep. Proced. Int. 38 (2006) 495-500.
-
[7]
[6] (a) A. Facchetti, A. Abboto, L. Beverina, et al., Layer-by-layer self-assembled pyrrole-based donor-acceptor chromophores as electro-optic materials, Chem. Mater 15 (2003) 1064-1072;
-
[8]
(b) S. Pu, J. Liu, L. Shen, J. Xu, Efficient synthesis and properties of isomeric photochromic diarylethenes having a pyrrole unit, Org. Lett. 9 (2007) 2139-2142.
-
[9]
[7] J. Getal, Synthesis of 3-[-1,3-thiazol-2-yl]-as potential antitumor agents, Antibiotics 28 (1975) 91-93.
-
[10]
[8] H. Kano, I. Adachi, R. Kido, K. Hirose, Isoxazoles. XVⅢ. Synthesis and pharmacological properties of 5-aminoalkyl-and 3-aminoalkylisoxazoles and related derivatives, J. Med. Chem. 10 (1967) 411-418.
-
[11]
[9] P.B. Reddy, E. Rajanarendar, A.K. Murthy, Anti fungal activity of isoxazolyl thiazolidine-4-ones, Indian Phytopathol. 37 (1984) 369-373.
-
[12]
[10] E.T. Marquis, J.R. Sanderson, Process for manufacturing alkylene carbonates using metal phthalocyanine catalysts, US Patent (1994) 5283356, Chem. Abstr. 120 (1994) 217649.
-
[13]
[11] A. Sadanadam, M.V. Rajam, K. Subash, E. Rajanarendar, Production of chromosomal breaks by isoxazolyl thiazolidin-ome in allium sativu, Indian Bot. Rep. 3 (1984) 38-42.
-
[14]
[12] R.L. Yan, J. Luo, C.X. Wang, et al., Cu(I)-catalyzed synthesis of polysubstituted pyrroles from dialkyl ethylenedicarboxylates and b-enamino ketones or esters in the presence of O2, J. Org. Chem. 75 (2010) 5395-5397.
-
[15]
[13] J.Y. Wang, X.P. Wang, Z.S. Yu, W. Yu, The synthesis of polysubstituted pyrroles via the coupling of phenyl iodonium ylides and enamine esters, Adv. Synth. Catal. 351 (2009) 2063-2066.
-
[16]
[14] Q. Li, A. Fan, Z. Lu, et al., One-pot AgOAc-mediated synthesis of polysubstituted pyrroles from primary amines and aldehydes: application to the total synthesis of purpurone, Org. Lett. 12 (2010) 4066-4069.
-
[17]
[15] S. Ngwerume, J. Camp, Synthesis of highly substituted pyrroles via nucleophilic catalyis, J. Org. Chem. 75 (2010) 6271-6274.
-
[18]
[16] Y. Wang, X. Bi, D. Li, et al., Iron-catalyzed synthesis of poly substituted pyrroles via[4C+1N] cyclization of 4-acetylenic ketones with primary amines, Chem. Commun. 47 (2011) 809-811.
-
[19]
[17] (a) E. Rajanarendar, S. Rama Krishna, K. Ramamurthy, Synthesis of novel isoxazolyl bis-thiazolo[3,2-a] pyrimidines, Chin. Chem. Lett. 23 (2012) 899-902;
-
[20]
(b) E. Rajanarendar, M. Nagi Reddy, K. Ramamurthy, Multi-component synthesis of methylene bis isoxazolo[4,5]-pyridine-N-oxide, Chin. Chem. Lett. 21 (2010) 927-930;
-
[21]
(c) E. Rajanarendar, M. Nagi Reddy, K. Ramamurthy, et al., Synthesis, antimicrobial, and mosquito larvicidal activity of 1-aryl-4-methyly-3,6-bis-(5-methylisoxazol-3-yl)-2-thioxo-2,3,6,10b-tetrahydro-1H-pyrimido[5,4-c]quinolin-5-ones, Bioorg. Med. Chem. Lett. 20 (2010) 6052-6055;
-
[22]
(d) E. Rajanarendar, S. Raju, M. Nagi Reddy, et al., Multi component synthesis and in vitro and in vivo anticancer activity of novel arylmethylene bis-isoxazolo[4,5-b]pyridine-N-oxide, India Eur. J. Med. Chem. Lett. 50 (2012) 274-279;
-
[23]
(e) E. Rajanarendar, G. Mohan, E. Kalyan Rao, M. Srinivas, Palladium-catalyzed Suzuki-Miyaura cross-coupling reaction of organoboronic acids with N-protected 4-iodophenyl alanine linked isoxazoles, Chin. Chem. Lett. 10 (2009) 1-4;
-
[24]
(f) E. Rajanarendar, A. Siva Rami Reddy, S. Raju, S. Firoz Pasha, K. Govardhan Reddy, A fast and highly efficient protocol for reductive amination of aromatic aldehydes using NaBH4 and isoxazole amines in an ionic liquid medium, Chin. J. Chem. 29 (2011) 769-772.
-
[25]
[18] A. Quilico, C. Musante, The use of 3,5-dimethyl 4 nitro isoxazole for the preparation of a,b-unsaturated aromatic acids, Gazz. Chim. Ital. 72 (1942) 399.
-
[26]
[19] A.K. Murthy, K.S.R.K.M. Rao, N.V.S. Rao, Amides and Schiff bases from 4-aminoisoxazoles and their psysiological activity, J. Indian Chem. Soc. 53 (1976) 1047-1054.
-
[27]
[20] Analytical data for compounds: 4a: Pale brown; yield 90%, mp 143-145℃; IR (KBr, cm-1): n 3446 (OH), 1740 (CO); 1H NMR (300 MHz, CDCl3): δ 1.59 (t, 6H, J = 7.2 Hz, 2CH23), 2.28 (s, 3H, CH23), 3.72 (q, 4H, J = 7.2 Hz, 2CH22), 6.68 (s, 1H, pyrrole-CH2), 6.74 (d, 1H, J = 12 Hz, CH25CH2), 6.91 (d, 1H, J = 12 Hz, CH25CH2), 7.00-7.75 (m, 5H, ArH), 8.11 (s, 1H, OH, D2O exchangeable). EI-MS [M]+ m/z 410. 13C NMR (75 MHz, CDCl3): δ 12.01, 16.32, 71.32, 101.62, 114.73, 116.34, 123.54, 123.78, 124.52, 127.38, 127.64, 128.20, 128.93, 129.47, 134.25, 136.41, 156.83, 159.72, 160.10, 168.45. Anal. Calcd. for C22H22N2O6: C, 64.38; H, 5.40; N, 6.83. Found C, 64.33; H, 5.42; N, 6.87. 4b: Pale yellow; yield 93%, mp 161-163℃; IR (KBr, cm-1): n 3432 (OH), 1738 (CO); 1H NMR (300 MHz, CDCl3): δ 1.61 (t, 6H, J = 7.2 Hz, 2CH23), 2.26 (s, 3H, CH23), 3.59 (q, 4H, J = 7.2 Hz, 2CH22), 6.51 (s, 1H, pyrrole-CH2), 6.69 (d, 1H, J = 12 Hz, CH25CH2), 6.90 (d, 1H, J = 12 Hz, CH25CH2), 7.10-7.72 (m, 4H, ArH), 8.18 (s, 1H, OH, D2O exchangeable). EI-MS [M]+ m/z 444. 13C NMR (75 MHz, CDCl3): δ 12.11, 16.28, 71.41, 101.58, 114.74, 116.31, 123.45, 123.81, 124.45, 127.30, 127.62, 128.55, 128.87, 129.41, 134.18, 136.42, 156.73, 159.70, 160.28, 168.45. Anal. Calcd. for C22H21ClN2O6: C, 59.40; H, 4.76; N, 6.30. Found C, 59.37; H, 4.80; N, 6.24. 4c: Pale yellow; yield 88%, m.p. 153-155℃; IR (KBr, cm-1): n 3442 (OH), 1745 (CO); 1H NMR (300 MHz, CDCl3): δ 1.70 (t, 6H, J = 7.2 Hz, 2CH23), 2.30 (s, 3H, CH23), 2.64 (s, 3H, ArCH23), 3.48 (q, 4H, J = 7.2 Hz, 2CH22), 6.58 (s, 1H, pyrrole-CH2), 6.67 (d, 1H, J = 12 Hz, CH25CH2), 6.83 (d, 1H, J = 12 Hz, CH25CH2), 6.98-7.66 (m, 4H, ArH), 8.15 (s, 1H, OH, D2O exchangeable). EI-MS [M]+ m/z 424. 13C NMR (75 MHz, CDCl3): δ 12.16, 16.15, 28.43,71.38, 101.58, 114.70, 116.43, 123.56, 123.82, 124.57, 127.28, 127.64, 128.47, 128.88, 129.61, 134.14, 136.40, 156.69, 159.77, 160.28, 168.24. Anal. Calcd. for C23H24N2O6: C, 65.08; H, 5.70; N, 6.60. Found. C, 65.03; H, 5.73; N, 6.66. 4d: Pale yellow; yield 90%,mp148-150℃; IR (KBr, cm-1): n 3440 (OH), 1742 (CO); 1H NMR (300 MHz, CDCl3): δ 1.66 (t, 6H, J = 7.2 Hz, 2CH23), 2.26 (s, 3H, CH23), 3.51 (q, 4H, J = 7.2 Hz, 2CH22), 3.62 (s, 3H, OCH23), 6.61 (s, 1H, pyrrole-CH2), 6.71 (d, 1H, J = 12 Hz, CH25CH2), 6.87 (d, 1H, J = 12 Hz, CH25CH2), 7.00-7.73 (m, 4H, ArH), 8.20 (s, 1H, OH, D2O exchangeable). EI-MS [M]+ m/z 440. 13C NMR (75 MHz, CDCl3): δ 12.10, 16.19, 63.44,71.26, 101.45, 114.78, 116.45, 123.56, 123.71, 124.38, 127.42, 127.77, 128.59, 128.62, 129.79, 134.26, 136.57, 156.61, 159.75, 160.36, 168.39. Anal. Calcd. for C23H24N2O7: C, 62.72; H, 5.49; N, 6.36. Found C, 62.77; H, 5.44; N, 6.36. 4e: Pale yellow; yield 87%, mp 160-162℃; IR (KBr, cm-1): n 3443 (OH), 1746 (CO); 1H NMR (300 MHz, CDCl3): δ 1.63 (t, 6H, J = 7.2 Hz, 2CH23), 2.30 (s, 3H, CH23), 3.49 (q, 4H, J = 7.2 Hz, 2CH22), 6.60 (s, 1H, pyrrole-CH2), 6.72 (d, 1H, J = 12 Hz, CH25CH2), 6.86 (d, 1H, J = 12 Hz, CH25CH2), 7.11-7.89 (m, 4H, ArH), 8.10 (s, 1H, OH, D2O exchangeable), 8.22 (s, 1H, OH, D2O exchangeable). EI-MS [M]+ m/z 426. 13C NMR (75 MHz, CDCl3): δ 12.19, 16.24, 71.39, 101.27, 114.55, 116.32, 123.45, 123.69, 124.40, 127.21, 127.53, 128.40, 128.73, 129.86, 134.41, 136.30, 156.44, 159.61, 160.29, 168.30. Anal. Calcd. for C22H22N2O7: C, 61.97; H, 5.20; N, 6.57. Found C, 61.93; H, 5.25; N, 6.52. 4f: Pale yellow; yield 92%, mp 173-175℃; IR (KBr, cm-1): n 3435 (OH), 1738 (CO); 1H NMR (300 MHz, CDCl3): δ 1.67 (t, 6H, J = 7.2 Hz, 2CH23), 2.24 (s, 3H, CH23), 2.60 (s, 3H, ArCH23), 3.44 (q, 4H, J = 7.2 Hz, 2CH22), 6.51 (s, 1H, pyrrole-CH2), 6.59 (d, 1H, J = 12 Hz, CH25CH2), 6.70 (d, J = 12 Hz, 1H, CH25CH2), 7.00-7.81 (m, 4H, ArH), 8.12 (s, 1H, OH, D2O exchangeable). EI-MS[M]+ m/z 424. 13C NMR (75 MHz, CDCl3): δ 11.98, 16.36, 27.42, 71.45, 101.42, 114.55, 116.52, 123.50, 123.77, 124.42, 127.38, 127.59, 128.41, 128.80, 129.63, 134.22, 136.51, 156.73, 159.81, 160.30, 168.11. Anal. Calcd. for C23H24N2O6: C, 65.08; H, 5.70; N, 6.60. Found C, 65.05; H, 5.68; N, 6.64. 4g: Pale yellow; yield 90%, mp 157-159℃; IR (KBr, cm-1): n 3432 (OH), 1738 (CO); 1H NMR (300 MHz, CDCl3): δ 1.68 (t, 6H, J = 7.2 Hz, 2CH23), 2.22 (s, 3H, CH23), 3.61 (q, 4H, J = 7.2 Hz, 2CH22), 6.59 (s, 1H, pyrrole-CH2), 6.65 (d, 1H, J = 12 Hz, CH25CH2), 6.72 (d, 1H, J = 12 Hz, CH25CH2), 7.04-7.77 (m, 4H, ArH), 8.25 (s, 1H, OH, D2O exchangeable). EI-MS [M]+ m/z 444. 13C NMR (75 MHz, CDCl3): δ 12.23, 16.18, 71.45, 101.41, 114.53, 116.28, 123.36, 123.78, 124.47, 127.41, 127.82, 128.41, 128.79, 129.32, 134.27, 136.50, 156.62, 159.75, 160.36, 168.26. Anal. Calcd. for C22H21ClN2O6: C, 59.40; H, 4.76; N, 6.30. Found C, 59.38; H, 4.79; N, 6.27. 4h: Pale yellow; yield 92%, mp154-156℃; IR (KBr,cm 1): n 3425 (OH), 1745 (CO); 1HNMR(300 MHz, CDCl3): δ 1.68 (t, 6H, J = 7.2Hz,2CH23), 2.30 (s, 3H,CH23), 3.48 (q, 4H, J = 7.2 Hz,2CH22), 6.55 (s, 1H,pyrrole-CH2), 6.60 (d,1H,J = 12 Hz,CH25CH2), 6.71(d,1H,J = 12Hz,CH25CH2), 7.00-7.61 (m, 4H, ArH), 8.09 (s,1H,OH,D2Oexchangeable). EI-MS [M]+m/z 488. 13CNMR (75 MHz, CDCl3): δ 12.28, 16.41, 71.39, 101.47, 114.60, 116.28, 123.55, 123.68, 124.40, 127.37, 127.55, 128.42, 128.79, 129.29, 134.25, 136.36, 156.44, 159.51, 160.39, 168.51. Anal. Calcd. for C22H21BrN2O6: C, 54.00; H, 4.33; N, 5.73. Found C, 54.03; H, 4.30; N, 5.69. 4i: Pale yellow; yield 91, mp 154-156℃; Anal. Calcd. for C22H21BrN2O6: C, 54.00; H, 4.33; N, 5.73. Found C, 53.97; H, 4.38; N, 5.77. 4j: Pale yellow; yield 91, mp 177-179℃; Anal. Calcd. for C24H27N3O6: C, 63.56; H, 6.00; N, 9.27. Found C, 63.51; H, 6.04; N, 9.23. 4k: Pale yellow; yield 93, mp 173-175℃; Anal. Calcd. for C22H21N3O8: C, 58.02; H, 4.65; N, 9.23. Found C, 58.04; H, 4.63; N, 9.28. 4l: Pale yellow;yield 89,mp 169-171℃;Anal. Calcd. for C23H22N2O8:C,60.79; H, 4.88; N, 6.16. Found C, 60.74; H, 4.93; N, 6.14.
-
[1]
-
-
[1]
Yu Pang , Min Wang , Ning-Hua Yang , Min Xue , Yong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575
-
[2]
Gangsheng Li , Xiang Yuan , Fu Liu , Zhihua Liu , Xujie Wang , Yuanyuan Liu , Yanmin Chen , Tingting Wang , Yanan Yang , Peicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880
-
[3]
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
-
[4]
Xiao-Ming Chen , Lianhui Song , Jun Pan , Fei Zeng , Yi Xie , Wei Wei , Dong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112
-
[5]
Gaofeng WANG , Shuwen SUN , Yanfei ZHAO , Lixin MENG , Bohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479
-
[6]
Bowen Wang , Longwu Sun , Qianqian Cao , Xinzhi Li , Jianai Chen , Shizhao Wang , Miaolin Ke , Fener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617
-
[7]
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
-
[8]
Long TANG , Yaxin BIAN , Luyuan CHEN , Xiangyang HOU , Xiao WANG , Jijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180
-
[9]
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650
-
[10]
Linjie Ju , Zhongxi Huang , Qian Shen , Chan Fu , Shuanghe Li , Wenjie Duan , Chenfeng Xu , Weizhen An , Zhiqiang Zhai , Jifu Wei , Changmin Yu , Guoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450
-
[11]
Lei Shen , Hongmei Liu , Ming Jin , Jinchao Zhang , Caixia Yin , Shuxiang Wang , Yutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572
-
[12]
Bairu Meng , Zongji Zhuo , Han Yu , Sining Tao , Zixuan Chen , Erik De Clercq , Christophe Pannecouque , Dongwei Kang , Peng Zhan , Xinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827
-
[13]
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
-
[14]
Ling-Hao Zhao , Hai-Wei Yan , Jian-Shuang Jiang , Xu Zhang , Xiang Yuan , Ya-Nan Yang , Pei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863
-
[15]
Wen-Tao Ouyang , Jun Jiang , Yan-Fang Jiang , Ting Li , Yuan-Yuan Liu , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038
-
[16]
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
-
[17]
Rong-Nan Yi , Wei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115
-
[18]
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
-
[19]
Peiyan Zhu , Yanyan Yang , Hui Li , Jinhua Wang , Shiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533
-
[20]
Jian Han , Li-Li Zeng , Qin-Yu Fei , Yan-Xiang Ge , Rong-Hui Huang , Fen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(654)
- HTML views(10)