Citation: Yong-Hai Liu, Ting-Ming Fu, Chun-Yan Ou, Wen-Ling Fan, Guo-Ping Peng. Improved preparation of (1S,3’R,4’S,5’S,6’R)-5-chloro-6-[(4-ethylphenyl)methyl]-3’,4’,5’,6’-tetrahydro-6’-(hydroxymethyl)-spiro[isobenzofuran-1(3H),2’-[2H]pyran]-3’,4’,5’-triol[J]. Chinese Chemical Letters, ;2013, 24(2): 131-133. shu

Improved preparation of (1S,3’R,4’S,5’S,6’R)-5-chloro-6-[(4-ethylphenyl)methyl]-3’,4’,5’,6’-tetrahydro-6’-(hydroxymethyl)-spiro[isobenzofuran-1(3H),2’-[2H]pyran]-3’,4’,5’-triol

  • Corresponding author: Guo-Ping Peng, 
  • Received Date: 9 November 2012
    Available Online: 3 December 2012

    Fund Project: This work was financially supported by the Open Project Program of National First-Class Key Discipline for Traditional Chinese Medicine of Nanjing University of Chinese Medicine, a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, PAPD (ysxk-2010). (ysxk-2010)

  • A convenient approach for the preparation of (1S,3'R,4'S,5'S,6'R)-5-chloro-6-[(4-ethylphenyl)methyl]-3',4',5',6'-tetrahydro-6'-(hydroxymethyl)-spiro[isobenzofuran-1(3H), 2'-[2H]pyran]-3',4',5'-triol is developed. The targeted compound was synthesized from 2-bromo-4-methylbenzoic acid in nine steps and the isomers of undesired ortho-products were avoided during the preparation.
  • 加载中
    1. [1]

      [1] D. Mathis, L. Vence, C. Benoist, beta-Cell death during progression to diabetes, Nature 414 (2001) 792-798.

    2. [2]

      [2] T. Asano, T. Ogihara, H. Katagiri, Glucose transporter and Na+/glucose cotransporter as molecular targets of anti-diabetic drugs, Curr. Med. Chem. 11 (2004) 2717-2724.

    3. [3]

      [3] J.R.L. Ehrenkranz, N.G. Lewis, C.R. Kahn, J. Roth, Phlorizin: a review, Diabetes Metab. Res. Rev. 21 (2005) 31-38.

    4. [4]

      [4] L. Binhua, X. Baihua, Exploration of O-spiroketal C-arylglucosides as novel and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors, Bioorg. Med. Chem. Lett. 19 (2009) 6877-6881.

    5. [5]

      [5] L. Binhua, X. Baihua, ortho-Substituted C-aryl glucosides as highly potent and selective renal sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors, Bioorg. Med. Chem. Lett. 18 (2010) 4422-4432.

    6. [6]

      [6] S. Tsutomu, H. Kiyofumi, et al., EU Patent, EP 2048153A1, 2009.

    7. [7]

      [7] L. Sandrine, A. Mohamed, Selective double Suzuki cross-coupling reactions. Synthesis of unsymmetrical diaryl (or heteroaryl) methanes, Tetrahedron Lett. 44 (2003) 9255-9258.

    8. [8]

      [8] C. Sultan, E.G. Paris, Palladium catalyzed cross-coupling between phenyl or naphthylboronic acids and benzylic bromides, Tetrahedron Lett. 40 (1999) 7599-7603.

    9. [9]

      [9] M.N. Sabrina, L.M. Adriano, Synthesis of diarylmethane derivatives from Pdcatalyzed cross-coupling reactions of benzylic halides with arylboronic acids, Tetrahedron Lett. 45 (2004) 8225-8228.

    10. [10]

      [10] Typical procedure for the synthesis of 6: To a solution of 4-ethylphenylboronic acid (0.225 g, 1.5 mmol) in toluene (5 mL) was added Pd(OAc)2 (2.3 mg, 0.01 mmol) under an argon atmosphere, and PPh3 (1.5 mg, 0.005 mmol) and K3PO4 (0.4 g, 2 mmol) were added sequentially. The mixture was stirred for 10 min at room temperature, and 5 (0.26 g, 1 mmol) was added. The reaction mixture was stirred for 4 h at 80℃ under an argon atmosphere, cooled to room temperature, and treated with water. The resultant mixture was extracted with EtOAc, washed with water and brine, dried over anhydrous sodium sulfate and concentrated in vacuo to give yellow oil (0.3 g, 82%).

    11. [11]

      [11] Typical procedure for the synthesis of 9: To a stirred 78℃ solution of 8 (0.41 g, 1 mmol) in 1:2 anhydrous THF/toluene (10 mL) was slowly added n-BuLi (1 mL, 1.1 mol/L in hexane) to maintain the temperature below 70℃. After stirring for 30 min, this solution was added to a stirred solution of (3R,4S,5R,6R)-3,4,5-tris(benzyloxy)-6-(benzyloxymethyl)-tetrahydro-pyran-2-one 10 (0.64 g, 1.2 mmol) in toluene (5 mL) to maintain the temperature below 65℃, then the solution was stirred for 5 h at 78℃, and the reaction was quenched by a solution of methanesulfonic acid (214 mg, 2.2 mmol) in THF (5 mL). The mixture was stirred for 24 h at room temperature and quenched with saturated NaHCO3. The mixture was extracted with EtOAc, washed with water and brine, dried over anhydrous sodium sulfate and concentrated in vacuo to give oil, which was purified by silicon column chromatography to get a colorless oil (0.62 g, 79%). Rf = 0.35 (petroleum ether/EtOAc, 8:1, v/v).

    12. [12]

      [12] Typical procedure for the synthesis of 1: To a solution of 9 (2.6 g, 3.33 mmol) in 2:3 EtOAc/MeOH (30 mL), 0.25 g palladium on carbon and 1,2-dichlorobenzene (10 mL) was added sequentially. The air of the reactor was removed by argon, then the 0.1 MPa H2 was applied for 12 h at 25℃. The solvent was filtrated, the filter cake was washed by EtOAc, and the filtrate was concentrated in vacuo to give oil. The oil was purified by silicon column chromatography to get a glassy off white solid (1.35 g, 96%). Rf = 0.35 (MeOH/EtOAc, 1:5, v/v).

    13. [13]

      [13] Selected data compounds: 6: 1H NMR: (300 MHz, CDCl3): δ 7.96 (s, 1H), 7.54 (s, 1H), 7.32 (d, 2H, J = 7.8 Hz), 7.11 (d, 2H, J = 7.8 Hz), 4.11 (s, 2H), 3.82 (s, 3H), 2.74 (q, 2H, J = 7.8 Hz), 1.26 (t, 3H, J = 7.8 Hz); 13C NMR (100 MHz, CDCl3): δ 168.9, 150.3, 142.4, 138.9, 134.6, 133.6, 132.8, 130.9, 129.5, 128.7, 121.7, 53.5, 36.3, 28.5, 14.7; MS: m/z 366 [M+]; 389 [M++Na+]; Anal. Calcd. for C17H16BrClO2: C 55.53, H 4.39; Found: C 55.49, H 4.41; 9 1H NMR (300 MHz, CDCl3): δ 7.52 (d, 1H, J = 1.5 Hz), 7.38-7.42 (m, 6H), 7.29-7.32 (m, 9H), 7.17-7.21 (m, 4H), 7.11 (d, 4H, J = 1.2 Hz), 7.08 (d, 2H, J = 8.4 Hz), 4.88-4.96 (m, 3H), 4.72 (S, 2H), 4.56-4.67 (m, 3H), 4.46 (d, 1H, J = 10.8 Hz), 4.16-4.22 (m, 2H), 3.88 (d, 1H, J = 8.4 Hz), 3.82 (s, 1H), 3.66-3.77 (m, 4H), 3.36 (d, 1H, J = 9.6 Hz), 2.60 (q, 2H, J = 7.6 Hz), 1.24 (t, 3H, J = 7.6 Hz); 13C NMR (100 MHz, CH23OD): δ 139.8, 138.6, 137.6, 130.5, 129.5, 129.1, 129.0, 128.9, 128.8, 128.6, 128.4, 128.3, 128.2, 128.1, 128.0, 127.4, 101.2, 85.6, 84.9, 79.8, 78.9, 78.5, 77.5, 76.4, 75.6, 74.9, 73.6, 70.2, 62.7, 39.4, 28.8, 16.0; MS:m/z 780 [M+]; 803 [M++Na+]; Anal. Calcd. for C50H49ClO6: C 76.86, H 6.32; Found: C 76.47, H 6.43; 1: 1H NMR (300 MHz, CH23OD): δ 1.19 (t, 3H, J = 7.5 Hz), 2.57 (q, 2H, J = 7.5, 7.8 Hz), 3.41-3.47 (1H, m), 3.64 (dd, 1H, J = 6 Hz), 3.73-3.83 (m, 4H), 3.95 (s, 2H), 5.11 (dd, 2H, J = 7.8, 12.3 Hz), 7.06-7.12 (m, 4H), 7.16-7.23 (m, 3H); 13C NMR (100 MHz, CH23OD): δ 143.3, 142.8, 140.8, 139.7, 138.2, 131.6, 130.8, 129.6, 128.8, 127.8, 125.6, 83.6, 77.2, 72.6, 71.4, 66.1, 62.7, 36.8, 28.6, 15.6; MS: m/z 420 [M+]; 443 [M++Na+]; Anal. Calcd. for C22H25ClO6: C 62.78, H 5.99; Found: C 62.71, H 6.02.

  • 加载中
    1. [1]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    2. [2]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    3. [3]

      Shuheng ZhangYuanyuan ZhangWanyu WangYuzhu HuXinchuan ChenBilan WangXiang Gao . A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. Chinese Chemical Letters, 2024, 35(12): 109658-. doi: 10.1016/j.cclet.2024.109658

    4. [4]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    5. [5]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    6. [6]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    7. [7]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    8. [8]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    9. [9]

      Dongmei DaiXiaobing LaiXiaojuan WangYunting YaoMengmin JiaLiang WangPengyao YanYaru QiaoZhuangzhuang ZhangBao LiDai-Huo Liu . Increasing (010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage. Chinese Chemical Letters, 2024, 35(10): 109405-. doi: 10.1016/j.cclet.2023.109405

    10. [10]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    11. [11]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    12. [12]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    13. [13]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    14. [14]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    15. [15]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    16. [16]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    17. [17]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    18. [18]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    19. [19]

      Jisheng LiuJunli ChenXifeng ZhangYin WuXin QiJie WangXiang Gao . Red blood cell membrane-coated FLT3 inhibitor nanoparticles to enhance FLT3-ITD acute myeloid leukemia treatment. Chinese Chemical Letters, 2024, 35(9): 109779-. doi: 10.1016/j.cclet.2024.109779

    20. [20]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

Metrics
  • PDF Downloads(0)
  • Abstract views(675)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return