Citation: He-Sheng Zhai, Lei Cao, Xing-Hua Xia. Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction[J]. Chinese Chemical Letters, ;2013, 24(2): 103-106. shu

Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction

  • Corresponding author: Xing-Hua Xia, 
  • Received Date: 2 December 2012
    Available Online: 31 December 2012

    Fund Project: This work was supported by the Grants from the National 973 Basic Research Program (No. 2012CB933800) (No. 2012CB933800) the National Natural Science Foundation of China (No. 21035002) (No. 21035002) the National Science Fund for Creative Research Groups (No. 21121091) (No. 21121091)

  • Graphitic carbon nitride (g-C3N4) was synthesized via direct pyrolysis of melamine and its electrocatalysis toward oxygen reduction reaction was studied. The morphology and structures of the products were characterized by scanning electron microscope and X-ray powder diffractometer. It was found that higher pyrolysis temperature resulted in more perfect crystalline structure of the graphitic carbon nitride product. Electrochemical characterizations show that the g-C3N4 has electrocatalytic activity toward ORR through a two-step and two-electron process.
  • 加载中
    1. [1]

      [1] D.M. Teter, R.J. Hemley, Low-compressibility carbon nitrides, Science 271 (1996) 53-55.

    2. [2]

      [2] J. Yang, H.Z. Tian, Y.H. Han, Electrical properties of graphite-like C3N4 under high pressure, J. Jilin Univ. Sci. Ed. 45 (2007) 85-88.

    3. [3]

      [3] S.M. Lyth, Y. Nabae, S. Moriya, et al., Carbon nitride as a nonprecious catalyst for electrochemical oxygen reduction, J. Phys. Chem. C 113 (2009) 20148-20151.

    4. [4]

      [4] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir 25 (2009) 10397-10401.

    5. [5]

      [5] K. Maeda, X.C. Wang, Y. Nishihara, et al., Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light, J. Phys. Chem. C 113 (2009) 4940-4947.

    6. [6]

      [6] F. Goettmann, A. Fischer, M. Antonietti, et al., Metal-free catalysis of sustainable Friedel-Crafts reactions: δirect activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds, Chem. Commun. (2006) 4530-4532.

    7. [7]

      [7] F. Goettmann, A. Fischer, M. Antonietti, et al., Mesoporous graphitic carbon nitride as a versatile, metal-free catalyst for the cyclisation of functional nitriles and alkynes, New J. Chem. 31 (2007) 1455-1460.

    8. [8]

      [8] M. Kim, S. Hwang, J.S. Yu, Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell, J. Mater. Chem. 17 (2007) 1656-1659.

    9. [9]

      [9] X.F. Chen, J.S. Zhang, X.Z. Fu, et al., Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light, J. Am. Chem. Soc. 131 (2009) 11658-11659.

    10. [10]

      [10] X.H. Yang, H.J. Wang, X.F. LU, et al., Solid-state synthesis of graphite-like C3N4 and its reversible Li+ intercalation, Chin. J. Chem. 67 (2009) 1166-1170.

    11. [11]

      [11] Y. Zhang, H. Sun, C.F. Chen, New template for metal decoration and hydrogen adsorption on graphene-like C3N4, Phys. Lett. A 373 (2009) 2778-2781.

    12. [12]

      [12] M. Groenewolt, M. Antonietti, Synthesis of g-C3N4 nanoparticles in mesoporous silica host matrices, Adv. Mater. 17 (2005) 1789-1792.

    13. [13]

      [13] J.L. Zimmerman, R. Williams, V.N. Khabashesku, et al., Synthesis of spherical carbon nitride nanostructures, Nano Lett. 1 (2001) 731-734.

    14. [14]

      [14] Q.X. Guo, Y. Xie, X.J. Wang, et al., Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures, Chem. Phys. Lett. 380 (2003) 84-87.

    15. [15]

      [15] V.N. Khabashesku, J.L. Zimmerman, J.L. Margrave, Powder synthesis and characterization of amorphous carbon nitride, Chem. Mater. 12 (2000) 3264-3270.

    16. [16]

      [16] A. Vinu, Two-dimensional hexagonally ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content, Adv. Funct. Mater. 18 (2008) 816-827.

    17. [17]

      [17] X.F. Lu, H.J. Wang, S.Y. Zhang, et al., Synthesis, characterization and electrocatalytic properties of carbon nitride nanotubes for methanol electrooxidation, Solid State Sci. 11 (2009) 428-432.

    18. [18]

      [18] X.F. Li, J. Zhang, L.H. Shen, et al., Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine, Appl. Phys. A 94 (2009) 387-392.

    19. [19]

      [19] X.F. Chen, Y.S. Jun, K. Takanabe, et al., Ordered mesoporous SBA-15 type graphitic carbon nitride: a semiconductor host structure for photocatalytic hydrogen evolution with visible light, Chem. Mater. 21 (2009) 4093-4095.

    20. [20]

      [20] J. Liang, Y. Zheng, J. Chen, et al., Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst, Angew. Chem. Int. Ed. 51 (2012) 3892-3896.

    21. [21]

      [21] J. Li, C.B. Cao, H.S. Zhu, Synthesis and characterization of graphite-like carbon nitride nanobelts and nanotubes, Nanotechnology 18 (2007) 115605.

    22. [22]

      [22] H.W. Tang, K.M. Ng, S.S. Chui, et al., Analysis of melamine cyanurate in urine using matrix-assisted laser desorption/ionization mass spectrometry, Anal. Chem. 81 (2009) 3676-3682.

    23. [23]

      [23] A.G. Bielejewska, C.E. Majro, L.J. Prins, et al., Thermodynamic stabilities of linear and crinkled tapes and cyclic rosettes in melamine cyanurate assemblies: a model description, J. Am. Chem. Soc. 123 (2001) 7518-7533.

    24. [24]

      [24] T. Ikeda, M. Boero, S.F. Huang, et al., Carbon alloy catalysts: active sites for oxygen reduction reaction, J. Phys. Chem. C 112 (2008) 14706-14709.

    25. [25]

      [25] Z.H. Sheng, L. Shao, J.J. Chen, et al., Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis, ACS Nano 5 (2011) 4350-4358.

  • 加载中
    1. [1]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    2. [2]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    3. [3]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    4. [4]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    9. [9]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    10. [10]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    11. [11]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    12. [12]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    13. [13]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    14. [14]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    15. [15]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    16. [16]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    17. [17]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    18. [18]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    19. [19]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    20. [20]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

Metrics
  • PDF Downloads(0)
  • Abstract views(736)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return