Citation: Jin-Fu Dong, Xin Yu, Cheng-Qing Ning, Liang Hu, Nie-Fang Yu. Selective mono-arylation in palladium-catalyzed cross-coupling reaction of dichlorotriazines with phenylboronate ester derivatives[J]. Chinese Chemical Letters, ;2013, 24(01): 41-44.
-
Palladium-catalyzed cross-coupling reaction between dichlorotriazines and phenylboronate esters produced the mono-arylated triazines selectively and thus,the corresponding phenyltriazine derivatives could be assembled efficiently in moderate to good overall yields(50-80%).
-
-
[1]
[1] A.M.Venkatesan,C.M.Dehnhardt,E.D.Santos,et al.,Bis(morpholino-1,3,5-tri-azine)derivatives:potent adenosine 5'-triphosphate competitive phosphatidy-linositol-3-kinase/mammalian target of rapamycin inhibitors:discovery of compound 26(PKI-587),a highly efficacious dual inhibitor,J.Med.Chem.53 (2010)2636-2645.
-
[2]
[2] C.M.Dehnhardt,A.M.Venkatesan,Z.C.Chen,et al.,Identification of 2-oxatriazines as highly potent pan-PI3K/mTOR dual inhibitors,Bioorg.Med.Chem.Lett.21 (2011)4773-4778.
-
[3]
[3] D.J.Richard,J.C.Verheijen,K.Yu,et al.,Triazines incorporating(R)-3-methylmor-pholine are potent inhibitors of the mammalian target of rapamycin(mTOR)with selectivity over PI3Kα,Bioorg.Med.Chem.Lett.20(2010)2654-2657.
-
[4]
[4] J.C.Verheijen,D.J.Richard,K.Curran,et al.,2-Arylureidophenyl-4-(3-oxa-8-azabicyclo[3.2.1] octan-8-yl)triazines as highly potent and selective ATP compet-itive mTOR inhibitors:optimization of human microsomal stability,Bioorg.Med. Chem.Lett.20(2010)2648-2653.
-
[5]
[5] A.Suda,H.Koyano,T.Hayase,et al.,Design and synthesis of novel macrocyclic 2-amino-6-arylpyrimidine Hsp90 inhibitors,Bioorg.Med.Chem.Lett.22(2012) 1136-1141.
-
[6]
[6] A.Ogino,S.Matsumura,Structure-activity study of antiulcerous and antiinflam-matory drugs by discriminant analysis,J.Med.Chem.23(1980)437-444.
-
[7]
[7] A.M.Venkatesan,Z.C.Chen,O.D.Santos,et al.,PKI-179:an orally efficacious dual phosphatidylinositol-3-kinase(PI3K)/mammalian target of rapamycin(mTOR) inhibitor,Bioorg.Med.Chem.Lett.20(2010)5869-5873.
-
[8]
[8] S.Betzi,R.Alam,M.Martin,et al.,Discovery of a potential allosteric ligand binding site in CDK2,ACS Chem.Biol.6(2011)492-501.
-
[9]
[9] M.Saleh,S.Abbott,V.Perron,et al.,Synthesis and antimicrobial activity of 2-fluorophenyl-4,6-disubstituted[1,3,5] triazines,Bioorg.Med.Chem.Lett.20 (2010)945-949.
-
[10]
[10] M.Y.Wani,A.R.Bhat,A.Azam,et al.,Probing the antiamoebic and cytotoxicity potency of novel tetrazole and triazine derivatives,Eur.J.Med.Chem.48(2012) 313-320.
-
[11]
[11] N.Sekar,V.S.Padalkar,K.R.Phatangare,et al.,Synthesis and biological evaluation of novel 6-aryl-2,4-disubstituted Schiff's base 1,3,5-triazine derivatives as anti-microbial agents,RJPBCS 2(2011)908-917.
-
[12]
[12] D.Dickens,A.Owen,A.Alfirevic,et al.,Lamotrigine is a substrate for OCT1 in brain endothelial cells,Biochem.Pharmacol.83(2012)805-814.
-
[13]
[13] X.Ma,T.Y.Poon,P.T.H.Wong,et al.,Synthesis and in vitro evaluation of 2,4-diamino-1,3,5-triazine derivatives as neuronal voltage-gated sod-ium channel blockers,Bioorg.Med.Chem.Lett.19(2009)5644-5647.
-
[14]
[14] D.Kaushik,S.A.Khan,G.Chawla,Design and synthesis of 2-(substituted aryloxy)-5-(substituted benzylidene)-3-phenyl-2,5-dihydro-1H-[1,2,4] triazin-6-one as potential anticonvulsant agents,Eur.J.Med.Chem.45(2010)3960-3969.
-
[15]
[15] R.H.Weisler,J.R.Calabrese,C.L.Bowden,et al.,Discovery and development of lamotrigine for bipolar disorder:a story of serendipity,clinical observations,risk taking,and persistence,J.Affect.Disorders 108(2008)1-9.
-
[16]
[16] K.W.Volz,D.A.Matthews,R.A.Alden,et al.,Crystal structure of avian dihydro-folate reductase containing phenyltriazine and NADPH,J.Biol.Chem.257(1982) 2528-2536.
-
[17]
[17] J.R.Theriault,A.S.Felts,B.S.Bates,et al.,Discovery of a new molecular probe ML228:an activator of the hypoxia inducible factor(HIF)pathway,Bioorg.Med. Chem.Lett.22(2012)76-81.
-
[18]
[18] D.Gravestock,A.L.Rousseau,A.C.Lourens,et al.,Expeditious synthesis and biological evaluation of novel 2,N6-disubstituted 1,2-dihydro-1,3,5-triazine-4,6-diamines as potential antimalarials,Eur.J.Med.Chem.46(2011)2022-2030.
-
[19]
[19] B.Verheyde,W.Maes,W.Dehaen,The use of 1,3,5-triazines in dendrimer synthesis,Mater.Sci.Eng.C 18(2001)243-245.
-
[20]
[20] A.M.Venkatesan,Z.C.Chen,C.M.Dehnhardt,et al.,Preparation of triazine com-pounds as PI3 kinase and mTOR inhibitors,W.O.Patent 143 317,2009.
-
[21]
[21] J.A.Spitz,V.Derrien,P.Sebban,Specific triazine resistance in bacterial reaction centers induced by a single mutation in the QA protein pocket,Biochemistry 44 (2005)1338-1343.
-
[22]
[22] G.H.Kuo,A.DeAngelis,S.Emanuel,et al.,Synthesis and identification of[1,3,5] tri-azine-pyridine biheteroaryl as a novel series of potent cyclin-dependent kinase inhibitors,J.Med.Chem.48(2005)4535-4546.
-
[23]
[23] M.Vidal-Mosquera,A.Fernandez-Carvajal,A.Moure,et al.,Triazine-based vanil-loid 1 receptor open channel blockers:design,synthesis,evaluation,and SAR analysis,J.Med.Chem.54(2011)7441-7452.
-
[24]
[24] T.Murase,M.Fujita,Highly blue luminescent triazine-amine conjugated oligo-mers,J.Org.Chem.70(2005)9269-9278.
-
[25]
[25] A.C.Hillier,G.A.Grasa,M.S.Viciu,et al.,Catalytic cross-coupling reactions mediated by palladium/nucleophilic carbene systems,J.Organomet.Chem. 653(2002)69-82.
-
[26]
[26] Typical reaction procedures:In a 100 mL flask equipped with a magnetic stirring bar were charged with diclorotriazine(1.2 mmol),K3PO4·3H2O(1.05 mmol), arylboronic esters(1.0 mmol)and Pd(PPh3)4(0.1 mmol)sequentially.The flask was attached to an argon line and the reaction was initiated by the addition of 10 mL dioxane/water mixture(10:1).The mixture was vigorously stirred for 1.2 h at 70 ℃.After cooling,the reaction mixture was concentrated under reduced pressure to dryness.Water was added,the aqueous suspension was extracted with DCM and the combined organic extracts were dried under MgSO4 and concentrated.The residue was purified by preparative RP-HPLC to afford the product.
-
[27]
[27] Representative spectroscopic data:(a)Spectral data for compound 6a: 1H NMR (400 MHz,CDCl3): δ 1.8-1.73(m,6 H),1.98-1.97(d,6 H,J=2.4 Hz),2.55(s,2 H), 2.55(br,4 H),3.58(s,2 H),4.05-3.92(br,4 H),7.44-7.28(m,6 H),8.18-8.10(m,3 H).13C NMR(100 MHz,CDCl3): δ 28.1,31.6,36.4,39.3,41.6,43.7,43.8,52.6,52.7, 62.9,119.8,124.4,127.4,128.4,129.2,135.7,137.5,138.5,164.4,170.8,171.7, 176.2;HRMS(ESI):m/z[M+H] + calcd.for C31H36ClN6O,543.2639;found 543.2625.
-
[28]
(b)Spectral data for compound 8f:1H NMR(400 MHz,DMSO-d6): δ 3.30(br,4 H),3.43(br,4 H),4.34(s,2 H),4.64(d,2 H,J=5.2 Hz),5.43-5.25(m,2 H),6.08-5.99(m,1 H),7.24-7.21(m,1 H),7.51-7.42(m,6 H),7.94-7.84(m,2 H);13C NMR(100 MHz,DMSO-d6): δ 50.5,50.6,59.6,68.9,114.8,118.2,120.1,121.6, 129.4,130.1,130.5,131.7,133.9,136.0,158.9,164.8,170.7,171.9;HRMS(ESI): m/z[M+H] +calcd.for C23H25ClN5O,422.1748;found 422.1636.
-
[1]
-
-
[1]
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
-
[2]
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
-
[3]
Yuhan Liu , Jingyang Zhang , Gongming Yang , Jian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790
-
[4]
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
-
[5]
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167
-
[6]
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
-
[7]
Junxin Li , Chao Chen , Yuzhen Dong , Jian Lv , Jun-Mei Peng , Yuan-Ye Jiang , Daoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732
-
[8]
Yi Zhu , Jingyan Zhang , Yuchao Zhang , Ying Chen , Guanghui An , Ren Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573
-
[9]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[10]
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
-
[11]
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
-
[12]
Lili Zhang , Hui Gao , Gong Zhang , Yuning Dong , Kai Huang , Zifan Pang , Tuo Wang , Chunlei Pei , Peng Zhang , Jinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204
-
[13]
Binyang Qin , Mengqi Wang , Shimei Wu , Yining Li , Chilin Liu , Yufei Zhang , Haosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921
-
[14]
Xiang Huang , Dongzhen Xu , Yang Liu , Xia Huang , Yangfan Wu , Dongmei Fang , Bing Xia , Wei Jiao , Jian Liao , Min Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665
-
[15]
Lei Shen , Yang Zhang , Linlin Zhang , Chuanwang Liu , Zhixian Ma , Kangjiang Liang , Chengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742
-
[16]
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
-
[17]
Yuexiang Liu , Xiangqiao Yang , Tong Lin , Guantian Yang , Xiaoyong Xu , Bubing Zeng , Zhong Li , Weiping Zhu , Xuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747
-
[18]
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
-
[19]
Jiajun Lu , Zhehui Liao , Tongxiang Cao , Shifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842
-
[20]
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(623)
- HTML views(17)