Citation: Jin-Fu Dong, Xin Yu, Cheng-Qing Ning, Liang Hu, Nie-Fang Yu. Selective mono-arylation in palladium-catalyzed cross-coupling reaction of dichlorotriazines with phenylboronate ester derivatives[J]. Chinese Chemical Letters, ;2013, 24(01): 41-44. shu

Selective mono-arylation in palladium-catalyzed cross-coupling reaction of dichlorotriazines with phenylboronate ester derivatives

  • Corresponding author: Nie-Fang Yu, 
  • Received Date: 15 October 2012
    Available Online: 27 November 2012

  • Palladium-catalyzed cross-coupling reaction between dichlorotriazines and phenylboronate esters produced the mono-arylated triazines selectively and thus,the corresponding phenyltriazine derivatives could be assembled efficiently in moderate to good overall yields(50-80%).
  • 加载中
    1. [1]

      [1] A.M.Venkatesan,C.M.Dehnhardt,E.D.Santos,et al.,Bis(morpholino-1,3,5-tri-azine)derivatives:potent adenosine 5'-triphosphate competitive phosphatidy-linositol-3-kinase/mammalian target of rapamycin inhibitors:discovery of compound 26(PKI-587),a highly efficacious dual inhibitor,J.Med.Chem.53 (2010)2636-2645.

    2. [2]

      [2] C.M.Dehnhardt,A.M.Venkatesan,Z.C.Chen,et al.,Identification of 2-oxatriazines as highly potent pan-PI3K/mTOR dual inhibitors,Bioorg.Med.Chem.Lett.21 (2011)4773-4778.

    3. [3]

      [3] D.J.Richard,J.C.Verheijen,K.Yu,et al.,Triazines incorporating(R)-3-methylmor-pholine are potent inhibitors of the mammalian target of rapamycin(mTOR)with selectivity over PI3Kα,Bioorg.Med.Chem.Lett.20(2010)2654-2657.

    4. [4]

      [4] J.C.Verheijen,D.J.Richard,K.Curran,et al.,2-Arylureidophenyl-4-(3-oxa-8-azabicyclo[3.2.1] octan-8-yl)triazines as highly potent and selective ATP compet-itive mTOR inhibitors:optimization of human microsomal stability,Bioorg.Med. Chem.Lett.20(2010)2648-2653.

    5. [5]

      [5] A.Suda,H.Koyano,T.Hayase,et al.,Design and synthesis of novel macrocyclic 2-amino-6-arylpyrimidine Hsp90 inhibitors,Bioorg.Med.Chem.Lett.22(2012) 1136-1141.

    6. [6]

      [6] A.Ogino,S.Matsumura,Structure-activity study of antiulcerous and antiinflam-matory drugs by discriminant analysis,J.Med.Chem.23(1980)437-444.

    7. [7]

      [7] A.M.Venkatesan,Z.C.Chen,O.D.Santos,et al.,PKI-179:an orally efficacious dual phosphatidylinositol-3-kinase(PI3K)/mammalian target of rapamycin(mTOR) inhibitor,Bioorg.Med.Chem.Lett.20(2010)5869-5873.

    8. [8]

      [8] S.Betzi,R.Alam,M.Martin,et al.,Discovery of a potential allosteric ligand binding site in CDK2,ACS Chem.Biol.6(2011)492-501.

    9. [9]

      [9] M.Saleh,S.Abbott,V.Perron,et al.,Synthesis and antimicrobial activity of 2-fluorophenyl-4,6-disubstituted[1,3,5] triazines,Bioorg.Med.Chem.Lett.20 (2010)945-949.

    10. [10]

      [10] M.Y.Wani,A.R.Bhat,A.Azam,et al.,Probing the antiamoebic and cytotoxicity potency of novel tetrazole and triazine derivatives,Eur.J.Med.Chem.48(2012) 313-320.

    11. [11]

      [11] N.Sekar,V.S.Padalkar,K.R.Phatangare,et al.,Synthesis and biological evaluation of novel 6-aryl-2,4-disubstituted Schiff's base 1,3,5-triazine derivatives as anti-microbial agents,RJPBCS 2(2011)908-917.

    12. [12]

      [12] D.Dickens,A.Owen,A.Alfirevic,et al.,Lamotrigine is a substrate for OCT1 in brain endothelial cells,Biochem.Pharmacol.83(2012)805-814.

    13. [13]

      [13] X.Ma,T.Y.Poon,P.T.H.Wong,et al.,Synthesis and in vitro evaluation of 2,4-diamino-1,3,5-triazine derivatives as neuronal voltage-gated sod-ium channel blockers,Bioorg.Med.Chem.Lett.19(2009)5644-5647.

    14. [14]

      [14] D.Kaushik,S.A.Khan,G.Chawla,Design and synthesis of 2-(substituted aryloxy)-5-(substituted benzylidene)-3-phenyl-2,5-dihydro-1H-[1,2,4] triazin-6-one as potential anticonvulsant agents,Eur.J.Med.Chem.45(2010)3960-3969.

    15. [15]

      [15] R.H.Weisler,J.R.Calabrese,C.L.Bowden,et al.,Discovery and development of lamotrigine for bipolar disorder:a story of serendipity,clinical observations,risk taking,and persistence,J.Affect.Disorders 108(2008)1-9.

    16. [16]

      [16] K.W.Volz,D.A.Matthews,R.A.Alden,et al.,Crystal structure of avian dihydro-folate reductase containing phenyltriazine and NADPH,J.Biol.Chem.257(1982) 2528-2536.

    17. [17]

      [17] J.R.Theriault,A.S.Felts,B.S.Bates,et al.,Discovery of a new molecular probe ML228:an activator of the hypoxia inducible factor(HIF)pathway,Bioorg.Med. Chem.Lett.22(2012)76-81.

    18. [18]

      [18] D.Gravestock,A.L.Rousseau,A.C.Lourens,et al.,Expeditious synthesis and biological evaluation of novel 2,N6-disubstituted 1,2-dihydro-1,3,5-triazine-4,6-diamines as potential antimalarials,Eur.J.Med.Chem.46(2011)2022-2030.

    19. [19]

      [19] B.Verheyde,W.Maes,W.Dehaen,The use of 1,3,5-triazines in dendrimer synthesis,Mater.Sci.Eng.C 18(2001)243-245.

    20. [20]

      [20] A.M.Venkatesan,Z.C.Chen,C.M.Dehnhardt,et al.,Preparation of triazine com-pounds as PI3 kinase and mTOR inhibitors,W.O.Patent 143 317,2009.

    21. [21]

      [21] J.A.Spitz,V.Derrien,P.Sebban,Specific triazine resistance in bacterial reaction centers induced by a single mutation in the QA protein pocket,Biochemistry 44 (2005)1338-1343.

    22. [22]

      [22] G.H.Kuo,A.DeAngelis,S.Emanuel,et al.,Synthesis and identification of[1,3,5] tri-azine-pyridine biheteroaryl as a novel series of potent cyclin-dependent kinase inhibitors,J.Med.Chem.48(2005)4535-4546.

    23. [23]

      [23] M.Vidal-Mosquera,A.Fernandez-Carvajal,A.Moure,et al.,Triazine-based vanil-loid 1 receptor open channel blockers:design,synthesis,evaluation,and SAR analysis,J.Med.Chem.54(2011)7441-7452.

    24. [24]

      [24] T.Murase,M.Fujita,Highly blue luminescent triazine-amine conjugated oligo-mers,J.Org.Chem.70(2005)9269-9278.

    25. [25]

      [25] A.C.Hillier,G.A.Grasa,M.S.Viciu,et al.,Catalytic cross-coupling reactions mediated by palladium/nucleophilic carbene systems,J.Organomet.Chem. 653(2002)69-82.

    26. [26]

      [26] Typical reaction procedures:In a 100 mL flask equipped with a magnetic stirring bar were charged with diclorotriazine(1.2 mmol),K3PO4·3H2O(1.05 mmol), arylboronic esters(1.0 mmol)and Pd(PPh3)4(0.1 mmol)sequentially.The flask was attached to an argon line and the reaction was initiated by the addition of 10 mL dioxane/water mixture(10:1).The mixture was vigorously stirred for 1.2 h at 70 ℃.After cooling,the reaction mixture was concentrated under reduced pressure to dryness.Water was added,the aqueous suspension was extracted with DCM and the combined organic extracts were dried under MgSO4 and concentrated.The residue was purified by preparative RP-HPLC to afford the product.

    27. [27]

      [27] Representative spectroscopic data:(a)Spectral data for compound 6a: 1H NMR (400 MHz,CDCl3): δ 1.8-1.73(m,6 H),1.98-1.97(d,6 H,J=2.4 Hz),2.55(s,2 H), 2.55(br,4 H),3.58(s,2 H),4.05-3.92(br,4 H),7.44-7.28(m,6 H),8.18-8.10(m,3 H).13C NMR(100 MHz,CDCl3): δ 28.1,31.6,36.4,39.3,41.6,43.7,43.8,52.6,52.7, 62.9,119.8,124.4,127.4,128.4,129.2,135.7,137.5,138.5,164.4,170.8,171.7, 176.2;HRMS(ESI):m/z[M+H] + calcd.for C31H36ClN6O,543.2639;found 543.2625.

    28. [28]

      (b)Spectral data for compound 8f:1H NMR(400 MHz,DMSO-d6): δ 3.30(br,4 H),3.43(br,4 H),4.34(s,2 H),4.64(d,2 H,J=5.2 Hz),5.43-5.25(m,2 H),6.08-5.99(m,1 H),7.24-7.21(m,1 H),7.51-7.42(m,6 H),7.94-7.84(m,2 H);13C NMR(100 MHz,DMSO-d6): δ 50.5,50.6,59.6,68.9,114.8,118.2,120.1,121.6, 129.4,130.1,130.5,131.7,133.9,136.0,158.9,164.8,170.7,171.9;HRMS(ESI): m/z[M+H] +calcd.for C23H25ClN5O,422.1748;found 422.1636.

  • 加载中
    1. [1]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    2. [2]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    3. [3]

      Yuhan LiuJingyang ZhangGongming YangJian Wang . Highly enantioselective carbene-catalyzed δ-lactonization via radical relay cross-coupling. Chinese Chemical Letters, 2025, 36(1): 109790-. doi: 10.1016/j.cclet.2024.109790

    4. [4]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    5. [5]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    6. [6]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    7. [7]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    8. [8]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    9. [9]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    10. [10]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    11. [11]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    12. [12]

      Lili ZhangHui GaoGong ZhangYuning DongKai HuangZifan PangTuo WangChunlei PeiPeng ZhangJinlong Gong . Cross-section design of the flow channels in membrane electrode assembly electrolyzer for CO2 reduction reaction through numerical simulations. Chinese Chemical Letters, 2025, 36(1): 110204-. doi: 10.1016/j.cclet.2024.110204

    13. [13]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    14. [14]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    15. [15]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    16. [16]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    17. [17]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    18. [18]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    19. [19]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    20. [20]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

Metrics
  • PDF Downloads(0)
  • Abstract views(623)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return