Citation: Shun-Yang Yu, Yan-Cang Li, Tao Xiong, Qun Yuan, Yong-Ming Liu, Zhong-Yi Yuan, Yi Xiao. A ladder conjugated polymer transducer for solid-contact Cu2+-selective electrodes[J]. Chinese Chemical Letters, ;2014, 25(2): 364-366. shu

A ladder conjugated polymer transducer for solid-contact Cu2+-selective electrodes

  • Corresponding author: Shun-Yang Yu,  Tao Xiong, 
  • Received Date: 19 July 2013
    Available Online: 14 October 2013

    Fund Project: This work was financially supported by the National Natural Science Foundation of China (No. 21107134) (No. 21107134) Chinese Academy of Sciences (No. KZCX2-YW-JS208) (No. KZCX2-YW-JS208)the Taishan Scholar Program of Shandong Province. (No. JQ200814)

  • In recent years, there has been a pronounced interest in solid-contact ion-selective electrodes (SC-ISEs), with emphasis on the use of conducting polymers as ion-to-electron transducer. In this work, a ladder conjugated polymer, thieno[3,2-b]thiophene (LCPT), was investigated in fabricating Cu2+-selective electrodes for the first time. The resulting electrodes were characterized by electrochemical impedance spectroscopy (EIS), chronopotentiometry, and the water layer test. Results proved that the active LCPT facilitates the ion-to-electron transduction, and avoids the detrimental aqueous layer formed at the interface of SC-ISEs.
  • 加载中
    1. [1]

      [1] Y. Chen, R.N. Liang, W. Qin, Potentiometric sensor for sensitive and selective detection of heparin, Chin. Chem. Lett. 23 (2012) 233-236.

    2. [2]

      [2] M.R. Pourjavid, T. Razavi, 2-Amino-4-(4-aminophenyl)thiazole application as an ionophore in the construction of a Lu(Ⅲ) selective membrane sensor, Chin. Chem. Lett. 23 (2012) 343-346.

    3. [3]

      [3] H.A. Zamani, Erbium(Ⅲ) PVC membrane sensor based on N-(benzyloxycarbonyloxy) succinimide as a new neutral ionophore, Chin. Chem. Lett. 22 (2011) 346-349.

    4. [4]

      [4] A. Michalska, All-solid-state ion selective and all-solid-state reference electrodes, Electroanalysis 24 (2012) 1253-1265.

    5. [5]

      [5] S.Y. Yu, L. Ju, F.H. Li, Y.M. Liu, J.F. Fang, A highly selective solid-contact electrode for Ag+ based on a monoazathiacrown ether ionophore, Chin. Chem. Lett. 23 (2012) 488-491.

    6. [6]

      [6] A. Benvidi, M.T. Ghanbarzadeh, M. Mazloum-Ardakani, R. Vafazadeh, Iodideselective polymeric membrane electrode based on copper(Ⅱ) bis(N-2-bromophenylsalicyldenaminato) complex, Chin. Chem. Lett. 22 (2011) 1087- 1090.

    7. [7]

      [7] F.H. Li, J.J. Ye, M. Zhou, et al., All-solid-state potassium-selective electrode using graphene as the solid contact, Analyst 137 (2012) 618-623.

    8. [8]

      [8] J.F. Ping, Y.X. Wang, J. Wu, Y.B. Ying, Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer, Electrochem. Commun. 13 (2011) 1529-1532.

    9. [9]

      [9] X.G. Li, H. Feng, M.R. Huang, G.L. Gu, M.G. Moloney, Ultrasensitive Pb(Ⅱ) potentiometric sensor based on copolyaniline nanoparticles in a plasticizer-free membrane with a long lifetime, Anal. Chem. 84 (2012) 134-140.

    10. [10]

      [10] J. Bobacka, Conducting polymer-based solid-state ion-selective electrodes, Electroanalysis 18 (2006) 7-18.

    11. [11]

      [11] J. Sutter, E. Lindner, R. Gyurcsányi, E. Pretsch, A polypyrrole-based solid-contact Pb2+-selective PVC-membrane electrode with a nanomolar detection limit, Anal. Bioanal. Chem. 380 (2004) 7-14.

    12. [12]

      [12] A. Cadogan, Z.Q. Gao, A. Lewenstam, A. Ivaska, All-solid-state sodium-selective electrode based on a calixarene ionophore in a poly(viny1 chloride) membrane with a polypyrrole, Solid Contact Anal. Chem. 64 (1992) 2496-2501.

    13. [13]

      [13] A. Kisiel, K. Kijewska, M. Mazur, K. Maksymiuk, A. Michalska, Polypyrrole microcapsules in all-solid-state reference electrodes, Electroanalysis 24 (2012) 165- 172.

    14. [14]

      [14] J. Bobacka, A. Ivaska, A. Lewenstam, Potentiometric ion sensors, Chem. Rev. 108 (2008) 329-351.

    15. [15]

      [15] T. Lindfors, J. Szücs, F. Sundfors, R. Gyurcsányi, Polyaniline nanoparticle-based solid-contact silicone rubber ion-selective electrodes for ultratrace measurements, Anal. Chem. 82 (2010) 9425-9432.

    16. [16]

      [16] J. Bobacka, M. McCarrick, A. Lewenstam, A. Ivaska, All-solid-state poly(vinyl chloride) membrane ion-selective electrodes with poly(3-octylthiophene) solid contact, Analyst 119 (1994) 1985-1991.

    17. [17]

      [17] K. Chumbimuni-Torres, N. Rubinova, A. Radu, L. Kubota, E. Bakker, Solid contact potentiometric sensors for trace level measurements, Anal. Chem. 78 (2006) 1318-1322.

    18. [18]

      [18] J.P. Veder, K. Patel, G. Clarke, et al., Synchrotron radiation fourier transforminfrared microspectroscopy study of undesirable water inclusions in solid-contact polymeric ion-selective electrodes, Anal. Chem. 82 (2010) 6203-6207.

    19. [19]

      [19] Z.Y. Yuan, Y. Xiao, Y. Yang, T. Xiong, Soluble ladder conjugated polymer composed of perylenediimides and thieno[3,2-b]thiophene (LCPT): a highly efficient synthesis via photocyclization with the sunlight, Macromolecules 44 (2011) 1788- 1791.

    20. [20]

      [20] Y. Yang, Y.C. Wang, Y.P. Xie, et al., Fused perylenebisimide-carbazole: new ladder chromophores with enhanced third-order onlinear optical activities, Chem. Commun. 47 (2011) 10749-10751.

    21. [21]

      [21] B. Paczosa-Bator, L. Cabaj, R. Piech, K. Skupień, Platinum nanoparticles intermediate layer in solid-state selective electrodes, Analyst 137 (2012) 5272-5277.

    22. [22]

      [22] J. Sutter, A. Radu, S. Peper, E. Bakker, E. Pretsch, Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range, Anal. Chim. Acta 523 (2004) 53-59.

    23. [23]

      [23] R. Marco, J.P. Veder, G. Clarke, A. Nelson, K. Prince, E. Pretsch, E. Bakker, Evidence of a water layer in solid-contact polymeric ion sensors, Phys. Chem. Chem. Phys. 10 (2008) 73-76.

    24. [24]

      [24] M. Fierke, C.Z. Lai, P. Bühlmann, A. Stein, Effects of architecture and surface chemistry of three-dimensionally ordered macroporous carbon solid contacts on performance of ion-selective electrodes, Anal. Chem. 82 (2010) 680-688.

    25. [25]

      [25] B. Paczosa-Bator, All-solid-state selective electrodes using carbon black, Talanta 93 (2012) 424-427.

    26. [26]

      [26] M. Fibbioli, W.E. Morf, M. Badertscher, N. Rooij, E. Pretsch, Potential drifts of solidcontacted ion-selective electrodes due to zero-current ion fluxes through the sensor membrane, Electroanalysis 12 (2000) 1286-1292.

  • 加载中
    1. [1]

      Liangfeng YangLiang ZengYanping ZhuQiuan WangJinheng Li . Copper-catalyzed photoredox 1,4-amidocyanation of 1,3-enynes with N-amidopyridin-1-ium salts and TMSCN: Facile access to α-amido allenyl nitriles. Chinese Chemical Letters, 2024, 35(11): 109685-. doi: 10.1016/j.cclet.2024.109685

    2. [2]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    3. [3]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    4. [4]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    5. [5]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    6. [6]

      Yun WeiLei ZhouWenbin HuLiming YangGuang YangChaoqiang WangHui ShiFei HanYufa FengXuan DingPenghui ShaoXubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172

    7. [7]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    8. [8]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    9. [9]

      Jia-hui Li Jinkai Qiu Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381

    10. [10]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    11. [11]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    12. [12]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    13. [13]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    14. [14]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    15. [15]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    16. [16]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    17. [17]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    18. [18]

      Jiaxiang GuoZeyi LiTianyu ZhangXinyu TianYue WangChuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337

    19. [19]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    20. [20]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

Metrics
  • PDF Downloads(0)
  • Abstract views(691)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return