Citation: Cun-Wei Qian, Wen-Lin Lv, Qian-Shou Zong, Mao-Yuan Wang, Dong Fang. Copper-catalyzed Ullmann-type synthesis of diaryl ethers assisted by salicylaldimine ligands[J]. Chinese Chemical Letters, ;2014, 25(2): 337-340. shu

Copper-catalyzed Ullmann-type synthesis of diaryl ethers assisted by salicylaldimine ligands

  • Corresponding author: Cun-Wei Qian, 
  • Received Date: 20 July 2013
    Available Online: 6 November 2013

    Fund Project:

  • A series of salicylaldimine ligands were designed to promote the copper-catalyzed Ullmann crosscoupling reaction. After a screening process, 2-((2-isopropylphenylimino)methyl)phenol was found to serve as a good supporting ligand for this reaction. Employing this Schiff-base ligand as a new supporting ligand, the copper-catalyzed coupling reactions of aryl bromides and aryl iodides with various phenols successfully proceeded in good yields under mild conditions. Various diaryl ethers were obtained with excellent yields in dioxane in the presence of K3PO4 and a catalytic amount of copper(I) salt.
  • 加载中
    1. [1]

      [1] (a) J. Lindley, Tetrahedron report number 163: copper assisted nucleophilic substitution of aryl halogen, Tetrahedron 40 (1984) 1433-1456; (b) F. Theil, Synthesis of diaryl ethers: a long-standing problem has been solved, Angew. Chem. Int. Ed. Engl. 38 (1999) 2345-2347; (c) J.S. Sawyer, Recent advances in diaryl ether synthesis, Tetrahedron 56 (2000) 5045-5065; (d) S.V. Ley, A.W. Thomas, Modern synthetic methods for copper-mediated C(aryl)- O, C(aryl)-N, and C(aryl)-S bond formation, Angew. Chem. Int. Ed. Engl. 42 (2003) 5400-5449; (e) K. Kunz, U. Scholz, D. Ganzer, Renaissance of Ullmann and Goldberg reactionsprogress in copper catalyzed C-N-, C-O- and C-S-coupling, Synlett 15 (2003) 2428-2439; (f) F. Monnier, M. Taillefer, Catalytic C-C, C-N, and C-O Ullmann-type coupling reactions: copper makes a difference, Angew. Chem. Int. Ed. Engl. 47 (2008) 3096- 3099.

    2. [2]

      [2] (a) M.E. Jung, J.C. Rohloff, Organic chemistry of L-tyrosine. 1. General synthesis of chiral piperazines from amino acids, J. Org. Chem. 50 (1985) 4909-4913; (b) S.B. Singh, G.R. Pettit, Antineoplastic agents. 206. Structure of the cytostatic macrocyclic lactone combretastatin D-2, J. Org. Chem. 55 (1990) 2797-2800; (c) V.H. Deshpande, N.J. Gohkhale, Synthesis of combretastatin D-2, Tetrahedron Lett. 33 (1992) 4213-4216; (d) R. Nagarajan, D.A. Evans, K.M. DeViries, Glycopeptide Antibiotics (Drugs and the Pharmaceutical Sciences), Marcel Decker, New York, 1994, pp. 63-104; (e) S. Zenitani, S. Tashiro, K. Shindo, et al., A novel inhibitor of geranylgeranyl diphosphate synthase from Beauveria felina QN22047. I. Taxonomy, fermentation, isolation, and biological activities, J. Antibiot. 56 (2003) 617-621; (f) P. Cristau, J.P. Vors, J.P. Zhu, Rapid and diverse route to natural product-like biaryl ether containing macrocycles, Tetrahedron 59 (2003) 7859-7870; (g) C.W. Qian, Y. Pang, D. Fang, Q.S. Zong, Synthesis and bioactivities of new triazole compounds containing aryl ether, Chin. J. Pestic. Sci. 15 (2013) 256-260.

    3. [3]

      [3] (a) G. Mann, J.F. Hartwig, Palladium alkoxides: potential intermediacy in catalytic amination, reductive elimination of ethers, and catalytic etheration. Comments on alcohol elimination from Ir(Ⅲ), J. Am. Chem. Soc. 118 (1996) 13109-13110; (b) M. Palucki, J.P. Wolfe, S.L. Buchwald, Synthesis of oxygen heterocycles via a palladium-catalyzed C-O bond-forming reaction, J. Am. Chem. Soc. 118 (1996) 10333-10334; (c) M. Palucki, J.P. Wolfe, S.L. Buchwald, Palladium-catalyzed intermolecular carbon-oxygen bond formation: a new synthesis of aryl ethers, J. Am. Chem. Soc. 119 (1997) 3395-3396; (d) A. Aranyos, D.W. Old, A. Kiyomori, et al., Novel electron-rich bulky phosphine ligands facilitate the palladium-catalyzed preparation of diaryl ethers, J. Am. Chem. Soc. 121 (1999) 4369-4378; (e) G. Mann, C. Incarvito, A.L. Rheigold, J.F. Hartwig, Palladium-catalyzed C-O coupling involving unactivated aryl halides. Sterically induced reductive elimination to form the C-O bond in diaryl ethers, J. Am. Chem. Soc. 121 (1999) 3224- 3225; (f) N. Kataoka, Q. Shelby, J.P. Stambuli, J.F. Hartwig, Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C-C, C-N, and C-O bondforming cross-couplings, J. Org. Chem. 67 (2002) 5553-5566; (g) D. Prim, J.M. Campagne, D. Joseph, B. Andrioletti, Palladium-catalysed reactions of aryl halides with soft, non-organometallic nucleophiles, Tetrahedron 58 (2002) 2041-2046; (h) A.V. Vorogushin, X.H. Huang, S.L. Buchwald, Use of tunable ligands allows for intermolecular Pd-catalyzed C-O bond formation, J. Am. Chem. Soc. 127 (2005) 8146-8149; (i) C.H. Burgos, T.E. Barder, X.H. Huang, S.L. Buchwald, Significantly improved method for the palladium-catalyzed coupling of phenols with aryl halides: understanding ligand effects, Angew. Chem. Int. Ed. Engl. 45 (2006) 4321-4326.

    4. [4]

      [4] F. Ullmann, The Ullmann condensation and the synthesis of diarylamines, Ber. Dtsch. Chem Ges. 36 (1903) 2382-2384.

    5. [5]

      [5] (a) J.F. Marcoux, S. Doye, S.L. Buchwald, A general copper-catalyzed synthesis of diarylethers, J. Am. Chem. Soc. 119 (1997) 10539-10540; (b) P.J. Fagan, E. Hauptman, R. Shapiro, A. Casalnuovo, Using intelligent/random library screening to design focused libraries for the optimization of homogeneous catalysts: Ullmann ether formation, J. Am. Chem. Soc. 122 (2000) 5043-5051; (c) C.W. Qian, S.J. Xu, Q.S. Zong, D. Fang, Copper-catalyzed synthesis of triarylamines from aryl halides and arylamines, Chin. J. Chem. 30 (2012) 1881-1885; (d) E. Buck, Z.J. Song, D. Tschaen, et al., Ullmann diaryl ether synthesis: rate acceleration by 2,2,6,6-tetramethylheptane-3,5-dione, Org. Lett. 4 (2002) 1623- 1626; (e) D. Ma, Q. Cai, H. Zhang, N,N-dimethyl glycine-promoted Ullmann coupling reaction of phenols and aryl halides, Org. Lett. 5 (2003) 3799-3802; (f) Q. Cai, B. Zou, D.W. Ma, Mild Ullmann-type biaryl ether formation reaction by Combination of ortho-substituent and ligand effects, Angew. Chem. Int. Ed. Engl. 45 (2006) 1276-1279; (g) Q. Cai, G. He, D.W. Ma, Mild and nonracemizing conditions for Ullmann-type diaryl ether formation between aryl iodides and tyrosine derivatives, J. Org. Chem. 71 (2006) 5268-5273; (h) A. Ouali, J.F. Spindler, H.J. Cristau, M. Taillefer, Mild conditions for coppercatalyzed coupling reaction of phenols and aryl iodides and bromides, Adv. Synth. Catal. 348 (2006) 499-505; (i) H.J. Cristau, P.P. Cellier, S. Hamada, J.F. Spindler, M. Tailefer, A general and mild Ullmann-type synthesis of diaryl ethers, Org. Lett. 6 (2004) 913-916; (j) H.H. Rao, Y. Jin, H. Fu, Y.Y. Jiang, Y.F. Zhao, A versatile and efficient ligand for copper-catalyzed formation of C-N, C-O, and P-C bonds: pyrrolidine-2-phosphonic acid phenyl monoester, Chem. Eur. J. 12 (2006) 3636-3646; (k) C. Palomo, M. Oiarbide, R. Lopez, E. Gomez-Bengoa, Phosphazene P4-But base for the Ullmann biaryl ether synthesis, Chem. Commun. (1998) 2091-2092; (l) X. Lü, W.L. Bao, A b-keto ester as a novel, efficient, and versatile ligand for copper(I)-catalyzed C-N, C-O, and C-S coupling reactions, J. Org. Chem. 72 (2007) 3863-3867; (m) A.B. Naidu, O.R. Raghunath, D.J.C. Prasad, G. Sekar, An efficient BINAM-copper( II) catalyzed Ullmann-type synthesis of diaryl ethers, Tetrahedron Lett. 49 (2008) 1057-1061; (n) Y. Chen, H. Chen, 1,1,1-Tris (hydroxymethyl) ethane as a new, efficient, and versatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols, Org. Lett. 8 (2006) 5609-5612; (o) T. Miao, L. Wang, Immobilization of copper in organic-inorganic hybrid materials: a highly efficient and reusable catalyst for the Ullmann diaryl etherification, Tetrahedron Lett. 48 (2007) 95-99; (p) D.A. Evans, J.L. Katz, T.R. West, Synthesis of diaryl ethers through the copperpromoted arylation of phenols with arylboronic acids. An expedient synthesis of thyroxine, Tetrahedron Lett. 39 (1998) 2937-2940; (q) Y. Zhao, Y. Wang, H. Sun, L. Li, H. Zhang, Ullmann reaction in tetraethyl orthosilicate: a novel synthesis of triarylamines and diaryl ethers, Chem. Commun. (2007) 3186-3188; (r) Q. Zhang, D.P. Wang, X.Y. Wang, K. Ding, (2-Pyridyl)acetone-promoted Cucatalyzed O-arylation of phenols with aryl iodides, bromides, and chlorides, J. Org. Chem. 74 (2009) 7187-7190; (s) J.W.W. Chang, S. Chee, S. Maka, et al., Copper-catalyzed Ullmann coupling under ligand- and additive-free conditions. Part 1: O-arylation of phenols with aryl halides, Tetrahedron Lett. 49 (2008) 2018-2022; (t) D. Maiti, S.L. Buchwald, Cu-catalyzed arylation of phenols: synthesis of sterically hindered and heteroaryl diaryl ethers, J. Org. Chem. 75 (2010) 1791-1794; (u) C.W. Qian, Q.S. Zong, D. Fang, Methenamine as an efficient ligand for coppercatalyzed coupling of phenols with aryl halides, Chin. J. Chem. 30 (2012) 199-203; (v) R.K. Gujadhur, C.G. Bates, D. Venkataraman, Formation of aryl-nitrogen, aryloxygen, and aryl-carbon bonds using well-defined copper(I)-based catalysts, Org. Lett. 3 (2001) 4315-4317; (w) R.K. Gujadhur, D. Venkataraman, Synthesis of diaryl ethers using an easy-toprepare, air- stable, soluble copper(I) catalyst, Synth. Commun. 31 (2001) 2865- 2879; (x) J.J. Niu, H. Zhou, Z.G. Li, J.W. Xu, S.J. Hu, An efficient Ullmann-type C-O bond formation catalyzed by an air-stable copper(I)-bipyridyl complex, J. Org. Chem. 73 (2008) 7814-7817.

    6. [6]

      [6] (a) K.C. Gupta, A.K. Sutar, Catalytic activities of Schiff base transition metal complexes, Coord. Chem. Rev. 252 (2008) 1420-1450; (b) R. Drozdzak, B. Allaert, N. Ledoux, et al., Ruthenium complexes bearing bidentate Schiff base ligands as efficient catalysts for organic and polymer syntheses, Coord. Chem. Rev. 249 (2005) 3055-3074; (c) L. Canali, D.C. Sherrington, Utilisation of homogeneous and supported chiral metal(salen) complexes in asymmetric catalysis, Chem. Soc. Rev. 28 (1999) 85-93; (d) B.Y. Li, Y.R. Wang, Y.M. Yao, Y. Zhang, Q. Shen, Synthesis, structure and reactivity of samarium complexes supported by Schiff-base ligands, J. Organomet. Chem. 694 (2009) 2409-2414; (e) J. Cui, M.J. Zhang, Y.W. Zhang, Amino-salicylaldimine-palladium(II) complexes: new and efficient catalysts for Suzuki and Heck reactions, Inorg. Chem. Commun. 13 (2010) 81-85; (f) W. Yang, H. Liu, D.M. Du, Efficient in situ three-component formation of chiral oxazoline-Schiff base copper(II) complexes: towards combinatorial library of chiral catalysts for asymmetric Henry reaction, Org. Biomol. Chem. 8 (2010) 2956-2960; (g) W. Yang, D.M. Du, Highly enantioselective Henry reaction catalyzed by C2- symmetricmodular BINOL-oxazoline Schiff base copper(II) complexes generated in situ, Eur. J. Org. Chem. 2011 (2011) 1552-1556.

    7. [7]

      [7] (a) F.S. Liu, Y.T. Huang, C. Lu, D.S. Shen, T. Cheng, Efficient salicylaldimine ligands for a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction, Appl. Organomet. Chem. 26 (2012) 425-429; (b) N. Xie, Y. Chen, Design and synthesis of a selective chemosensor for Zn2+, Chin. J. Chem. 24 (2006) 1800-1803; (c) Q.H. Chen, J.L. Huang, Synthesis of novel zirconium complexes bearing mono- Cp and tridentate Schiff base [ONO] ligands and their catalytic activities for olefin polymerization, Appl. Organomet. Chem. 20 (2006) 758-765.

  • 加载中
    1. [1]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    2. [2]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    3. [3]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    4. [4]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    5. [5]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    6. [6]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    7. [7]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    8. [8]

      Shaonan Tian Yu Zhang Qing Zeng Junyu Zhong Hui Liu Lin Xu Jun Yang . Core-shell gold-copper nanoparticles: Evolution of copper shells on gold cores at different gold/copper precursor ratios. Chinese Journal of Structural Chemistry, 2023, 42(11): 100160-100160. doi: 10.1016/j.cjsc.2023.100160

    9. [9]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    10. [10]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    11. [11]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    12. [12]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    13. [13]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    14. [14]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    15. [15]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    16. [16]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    17. [17]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2024.100191

    18. [18]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    19. [19]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    20. [20]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

Metrics
  • PDF Downloads(0)
  • Abstract views(888)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return