Citation: Gang Qin, Mei-Qin Zhang, Yang Zhang, Yu Zhu, Shou-Liang Liu, Wen-Jin Wu, Xue-Ji Zhang. Visualization of latent fingerprints using Prussian blue thin films[J]. Chinese Chemical Letters, ;2013, 24(2): 173-176.
-
Herein, a facile and effective approach was proposed for visualizing latent fingerprints (LFPs) on two kinds of conductive surfaces by spatially selective electrochemical deposition of Prussian blue (PB) thin films. This strategy exploited the fingerprint residue as an insulating mask and the PB thin films were only generated on the bare surface including the valleys between the papillary ridges, which produced a negative image of LFPs with high resolution up to the third level information. The surface morphology of PB films was characterized by the field emission scanning electron microscopy (FE-SEM). This enhancement technique showed promising performance in selected materials of practical interest.
-
-
[1]
[1] H.C. Lee, R.E. Gaensslen, Advances in Fingerprint Technology, 2nd ed., CRC, Boca Raton, 2001.
-
[2]
[2] M.R. Hawthorne, Fingerprint Analysis and Understanding, CRC, Boca Raton, 2009.
-
[3]
[3] C. Champod, C. Lennard, P. Margot, M. Stoilovic, Fingerprints and other ridge skin impressions, CRC, Boca Raton, 2004.
-
[4]
[4] B.J. Jones, R. Downham, V.G. Sears, Nanoscale analysis of the interaction between cyanoacrylate and vacuum metal deposition in the development of latent fingermarks on low-density polyethylene, J. Forensic Sci. 57 (2012) 196-200.
-
[5]
[5] P. Hazarika, D.A. Russell, Advances in fingerprint analysis, Angew. Chem. Int. Ed. 51 (2012) 3524-3531.
-
[6]
[6] Y. Li, L.R. Xu, B. Su, Aggregation induced emission for the recognition of latent fingerprints, Chem. Commun. 48 (2012) 4109-4111.
-
[7]
[7] Y. Chen, C.J. Zhang, D.M. Gao, et al., Development of visualization of latent fingerprints, Chin. J. Appl. Chem. 28 (2011) 1009-1104.
-
[8]
[8] X.J. Yu, J.J. Liu, Y.C. Yu, S.L. Zuo, Application of fluorescent quantum dots synthesized via chemical routes in fingerprints development, Chin. J. Appl. Chem. 29 (2012) 855-860.
-
[9]
[9] X.N. Shan, U. Patel, S.P. Wang, R. Iglesias, N.J. Tao, Imaging local electrochemical current via surface plasmon resonance, Science 327 (2010) 1363-1366.
-
[10]
[10] M.Q. Zhang, H.H. Girault, Fingerprint imaging by scanning electrochemical microscopy, Electrochem. Commun. 9 (2007) 1778-1782.
-
[11]
[11] M.Q. Zhang, A. Becue, M. Prudent, C. Champod, H.H. Girault, SECM imaging of MMD-enhanced latent fingermarks, Chem. Commun. 38 (2007) 3948-3950.
-
[12]
[12] G. Qin, M.Q. Zhang, T. Zhang, et al., Label-free electrochemical imaging of latent fingerprints on metal surfaces, Electroanalysis 24 (2012) 1027-1032.
-
[13]
[13] M.Q. Zhang, G. Qin, Y.P. Zuo, et al., SECM imaging of latent fingerprints developed by deposition of Al-doped ZnO thin film, Electrochim. Acta 78 (2012) 412-416.
-
[14]
[14] L.R. Xu, Y. Li, S.Z. Wu, X.H. Liu, B. Su, Imaging latent fingerprints by electrochemiluminescence, Angew. Chem. Int. Ed. 51 (2012) 1-6.
-
[15]
[15] R.M. Brown, A.R. Hillman, Electrochromic enhancement of latent fingerprints by poly(3,4-ethylenedioxythiophene), Phys. Chem. Chem. Phys. 14 (2012) 8653-8661.
-
[16]
[16] C. Bersellini, L. Garofano, M. Giannetto, F. Lusardi, G. Mori, Development of latent fingerprints on metallic surfaces using electropolymerization processes, J. Forensic Sci. 46 (2001) 871-877.
-
[17]
[17] A.A. Karyakin, E.E. Karyakina, L. Gorton, Amperometric biosensor for glutamate using Prussian Blue based "artificial peroxidase" as a transducer for hydrogen peroxide, Anal. Chem. 72 (2000) 1720-1723.
-
[18]
[18] F. Ricci, A. Amine, G. Palleschi, D. Moscone, Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability, Biosens. Bioelectron. 18 (2003) 165-174.
-
[19]
[19] S. Jadoon, A. Waseem, M. Yaqoob, A. Nabi, Flow injection spectrophotometric determination of vitamin E in pharmaceuticals, milk powder and blood serum using potassium ferricyanide-Fe(Ⅲ) detection system, Chin. Chem. Lett. 21 (2010) 712-715.
-
[20]
[20] S.L. Wang, M. Wang, Q.M. Li, Application of potassium ferricyanide in the spectrophotometric determination of captopril, Chin. Chem. Lett. 20 (2009) 88-91.
-
[21]
[21] S.M. Chen, Preparation, characterization, and electrocatalytic oxidation properties of iron, cobalt, nickel, and indium hexacyanoferrate, J. Electroanal. Chem. 521 (2002) 29-52.
-
[22]
[22] Y.J. Ma, Y.Y. Pan, W.F. Wang, M.X. Yang, M. Zhou, Electrocatalytic oxidation of methanol at platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes, Chin. Chem. Lett. 21 (2010) 337-340.
-
[23]
[23] P.H. Zhou, D.S. Xue, H.Q. Luo, X.G. Chen, Fabrication, structure, and magnetic properties of highly ordered Prussian blue nanowire arrays, Nano Lett. 2 (2002) 845-847.
-
[24]
[24] P.R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future, Mater. Chem. Phys. 77 (2003) 117-133.
-
[25]
[25] M. Jayalakshimi, F.J. Scholz, Charge-discharge characteristics of a solid-state Prussian blue secondary cell, J. Power Sources 87 (2000) 212-217.
-
[26]
[26] C. Yang, C.H. Wang, J.S. Wu, X.H. Xia, Mechanism investigation of Prussian blue electrochemically deposited from a solution containing single component of ferricyanide, Electrochim. Acta 51 (2006) 4019-4023.
-
[27]
[27] Y.J. Zou, L.X. Sun, F. Xu, Prussian Blue electrodeposited on MWNTs-PANI hybrid composites for H2O2 detection, Talanta 72 (2007) 437-442.
-
[28]
[28] F. Ricci, C. Goncalves, A. Amine, et al., Electroanalytical study of Prussian blue modified glassy carbon paste electrodes, Electroanalysis 15 (2003) 1204-1211.
-
[1]
-
-
[1]
Junhan Luo , Qi Qing , Liqin Huang , Zhe Wang , Shuang Liu , Jing Chen , Yuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483
-
[2]
Yun Wei , Lei Zhou , Wenbin Hu , Liming Yang , Guang Yang , Chaoqiang Wang , Hui Shi , Fei Han , Yufa Feng , Xuan Ding , Penghui Shao , Xubiao Luo . Recovery of cathode copper and ternary precursors from CuS slag derived by waste lithium-ion batteries: Process analysis and evaluation. Chinese Chemical Letters, 2024, 35(7): 109172-. doi: 10.1016/j.cclet.2023.109172
-
[3]
Siwei Lv , Tantian Tan , Xinyue Li , Siyan Zhang , Mingyuan Zhang , Minghao Li , Hangshuo Guo , Zhaorong Li , Liangjie Dong , Fengshuo Zhang , Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034
-
[4]
Zhuoya WANG , Le HE , Zhiquan LIN , Yingxi WANG , Ling LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194
-
[5]
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
-
[6]
Hui Liu , Xiangyang Tang , Zhuang Cheng , Yin Hu , Yan Yan , Yangze Xu , Zihan Su , Futong Liu , Ping Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809
-
[7]
Pingping Wang , Huixian Miao , Kechuan Sheng , Bin Wang , Fan Feng , Xuankun Cai , Wei Huang , Dayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600
-
[8]
Liwen Wang , Boyang Wang , Siyu Lu , Shubo Lv , Xiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497
-
[9]
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(678)
- HTML views(20)