BiPO4/石墨烯光电极的制备及其光电催化性能

和泽田 刘森 钟义 陈代梅 丁浩 王佼 杜高翔 杨光 郝强

引用本文: 和泽田,  刘森,  钟义,  陈代梅,  丁浩,  王佼,  杜高翔,  杨光,  郝强. BiPO4/石墨烯光电极的制备及其光电催化性能[J]. 催化学报, 2020, 41(2): 302-311. doi: S1872-2067(19)63520-5 shu
Citation:  Zetian He,  Sen Liu,  Yi Zhong,  Daimei Chen,  Hao Ding,  Jiao Wang,  Gaoxiang Du,  Guang Yang,  Qiang Hao. Preparation of BiPO4/graphene photoelectrode and its photoelectrocatalyitic performance[J]. Chinese Journal of Catalysis, 2020, 41(2): 302-311. doi: S1872-2067(19)63520-5 shu

BiPO4/石墨烯光电极的制备及其光电催化性能

  • 基金项目:

    国家自然科学基金(21577132,21978276);中央高校基本科研业务经费(2652018326,2652018298,2652018297);北京市教委科技计划重点项目(KZ201910853043)

摘要: 光电催化(PEC)氧化法是一种使用半导体电极材料在光和电的共同作用下处理水中有机污染的有效方法.在PEC工艺中,施加偏压不仅可以利用电催化对有机污染物进行降解,而且在偏压作用下,光生电子-空穴对能够得到有效的分离和传输,从而大大提高了机物污染物的去除速率.尽管PEC技术已经取得了许多重要的突破,但是能量转换效率仍然无法满足实际应用.因此,开发具有优异性能,良好稳定性和低成本的光电极材料是一项具有挑战性的研究工作.
本文采用两步电沉积法制备了BiPO4纳米棒/还原氧化石墨烯/FTO复合光电极(BiPO4/rGO/FTO).电镜结果表明,电沉积制得的纳米棒状磷酸铋均匀负载在石墨烯纳米片层表面.采用甲基橙为模型体系,考察了复合光电极的光电催化活性.BiPO4/rGO/FTO复合电极的光电催化降解速率是BiPO4/FTO光电极的2.8倍,显示出优良的光电催化活性.实验进一步研究了工作电压和BiPO4沉积时间对甲基橙光电降解性能的影响.最佳的BiPO4沉积时间为45min,最佳工作电压为1.2V.捕获实验和ESR实验表明羟基自由基(·OH)和超氧化物自由基(·O2-)是该电极的主要活性物种.BiPO4/rGO/FTO复合电极经过四次循环实验后其降解甲基橙效率保持不变,显示出高稳定性,采用光电流,交流阻抗及其荧光测试对其光催化机理进行推测.结果表明该复合光电极具有高PEC活性的主要原因是:石墨烯的引入加快了BiPO4的电子空穴的分离,拓宽了石墨烯的可见光吸收范围;同时,石墨烯诱导产生的BiPO4混合相也进一步促进了光生电子空穴的分离,提高了光电降解活性.

English

    1. [1] S. Chai, G. Zhao, Y. N. Zhang, Y, Wang, F, Nong, Environ. Sci. Technol., 2012, 46, 10182-10190.

    2. [2] T. Li, X. Li, Q. Zhao, Y. Shi, W. Teng, Appl. Catal. B, 2014, 156, 362-370.

    3. [3] C. Zhai, M. Zhu, D. Bin, H. Wang, Y. Du, C. Wang, P. Wang, ACS Appl. Mater. Interfaces, 2014, 6, 17753-17761.

    4. [4] P. Chatchai, A. Y. Nosaka, Y. Nosaka, Electrochim. Acta, 2013, 94, 314-319.

    5. [5] H. Zheng, J. Z. Ou, M. S. Strano, R. B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Funct. Mater, 2011, 21, 2175-2196.

    6. [6] X. Zhang, D. Chandra, M. Kajita, H. Takahashi, L. Dong, A. Shoji, K. Saito, T. Yui, M. Yagi, Int. J. Hydrogen Energy, 2014, 39, 20736-20743.

    7. [7] X. F. Wu, Y, Sun, H. Li, Y. J. Wang, C. X. Zhang, J.-R. Zhang, J. Z. Su, Y. W. Wang, Y. Zhang, C. Wang, M. Zhang, J. Alloys Compd., 2018, 740, 1197-1203.

    8. [8] Z. Liu, Q. Song, M. Zhou, Z. Guo, J. Kang, H. Yan, Chem. Eng. J., 2019, 374, 554-563.

    9. [9] D. Chen, Z. Liu, ChemSusChem, 2018, 11, 3438-3448.

    10. [10] Y. Li, Z. Liu, J. Zhang, Z. Guo, Y. Xin, L. Zhao, J. Alloys Compd., 2019, 790, 493-501.

    11. [11] C. S. Pan, Y. F. Zhu, Environ. Sci. Technol., 2010, 44, 5570-5574.

    12. [12] T. K. Kim, M. N. Lee, S. H. Lee, Y. C. Park, C. K. Jung, J. H. Boo, Thin Solid Films, 2005, 475, 171-177.

    13. [13] Y. Zhang, B. Shen, H. Huang, H. Ying, B, Fei, F. Lv, Appl. Surf. Sci., 2014, 319, 272-277.

    14. [14] Y. F. Zhang, M. Sillanpaa, S. Obregon, G. Cobn, J. Mol. Catal. A, 2015, 402, 92-99.

    15. [15] S. Liu, M. Y. Zhao, Z. T. He, Y. Zhong, H. Ding, D. M. Chen, Chin. J. Catal., 2019, 40, 446-457.

    16. [16] N. C Zheng, T. Ouyang, Y. Chen, Z. Wang, D. Y. Chen, Z. Q. Liu, Catal. Sci. Technol., 2019, 9, 1357-1364.

    17. [17] Z. Liu, E. Lei, J. Ya, Y. Xing, Appl. Surf. Sci., 2009, 255, 6415-6420.

    18. [18] X. Zhao, H. Liu, J. Qu, Appl. Surf. Sci., 2011, 257, 4621-4624.

    19. [19] G. Yang, D. Chen, H. Ding, J. Feng, J. Z. Zhang, Y. Zhu, S. Hamid, D. W. Bahnemann, Appl. Catal. B, 2017, 219, 611-618.

    20. [20] Y. Li, X. Wu, W. Ho, K. Lv, Q. Li, M. Li, S. C. Lee, Chem. Eng. J., 2018, 336, 200-210.

    21. [21] Z. Zhou, Y. Li, K. Lv, X. Wu, Q. Li, J. Luo, Mater. Sci. Semicond. Process, 2018, 75, 334-341.

    22. [22] K. Lv, S. Fang, L. Si, Y. Xia, W. Ho, M. Li, Appl. Surf. Sci., 2017, 391, 218-227.

    23. [23] S. K. Mandal, K. Dutta, S. Pal, S. Mandal, A. Naskar, P. K. Pal, T. S. Bhattacharya, A. Singha, R. Saikh, S. De, D. Jana, Mater. Chem. Phys., 2019, 223, 456-465.

    24. [24] M. Li, G. H Xu, Z. Y. Guan, Y. Wang, H. Yu, Y. Yu, Sci. Total Environ., 2019, 664, 230-239.

    25. [25] D. Chen, J. Yang, Y. Zhu, Y. Zhang, Y. Zhu, Appl. Catal. B, 2018, 233, 202-212.

    26. [26] D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao, R. Zong, Y. Zhu, J. Phys. Chem. C, 2014, 118, 15300-15307.

    27. [27] Z. M. Zhang, C. T. Gao, Y. X. Li, W. Han, W. Fu, Y. He, E. Xie, Nano Energy, 2016, 30, 892-899.

    28. [28] Y. Lan, Z. Liu, Z. Guo, X. Li, L. Zhao, L. Zhan, M. Zhang, Dalton Trans., 2018, 47, 12181-12187.

    29. [29] D. Chen, Z. Liu, Z. Guo, W. Yan, Y. Xin, J. Mater. Chem. A, 2018, 6, 20393-20401.

    30. [30] D. Cao, Y. B. Wang, M. Qiao, X. Zhao, J. Catal., 2018, 360,240-249.

    31. [31] C. S. Pan, Y. F. Zhu, J. Mater. Chem., 2011, 21, 4235-4241.

  • 加载中
计量
  • PDF下载量:  11
  • 文章访问数:  3668
  • HTML全文浏览量:  201
文章相关
  • 收稿日期:  2019-09-29
  • 修回日期:  2019-10-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章