Citation: Hui Zhao, Chen-Chen Weng, Jin-Tao Ren, Li Ge, Yu-Ping Liu, Zhong-Yong Yuan. Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts[J]. Chinese Journal of Catalysis, 2020, 41(2): 259-267. doi: S1872-2067(19)63455-8
有机膦酸盐衍生的氮掺杂的磷酸钴/碳纳米管杂化材料作为高效氧还原电催化剂
XRD和TEM结果表明,用这种方法得到的磷酸钴(CoPiC)为Co2P2O7物相,与磷酸二氢钠为磷源制备得到的CoPi相比,CoPiC的表面有石墨化碳层的存在,EDS图谱表明,Co,P,C,N均匀地掺杂到复合材料的骨架结构中.Raman光谱结果表明,石墨化碳层的存在和适量的碳纳米管的引入均可以增强复合材料的石墨化程度并提高了导电性,而氮掺杂导致其缺陷位点增多.XPS结果进一步表明,有机膦酸钴可以作为前驱体可制得氮掺杂的磷酸钴/碳纳米管杂化材料.电催化反应测试表明,CoPiC-N/CNT-3的氧还原活性与商业Pt/C相当,其遵循的是4电子的反应路径,而且抗甲醇氧化能力和稳定性均优于Pt/C.原因主要归结于以下几点:(1)磷酸钴颗粒与氧化碳纳米管的协同作用可以显著增强氧还原催化活性,引入的碳纳米管可以克服磷酸钴导电性差的缺陷;(2)磷酸钴在复合材料中分散均匀,使得可以充分利用催化剂的活性位点;(3)氮掺杂可以调变材料的电子结构,从而改善催化活性;(4)石墨化碳层的存在可以改善材料的电子导电性和稳定性,有利于电子转移并可以保护磷酸钴颗粒在催化氧还原反应过程中不被电解液腐蚀.可见,所制有机膦酸衍生的氮掺杂的磷酸钴/碳纳米管杂化材料有望替代Pt/C催化剂,并推动清洁可再生能源领域的相关研究.
English
Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts
-
Key words:
- Metal phosphonate
- / Metal phosphate
- / Carbon nanotubes
- / Oxygen reduction reaction
- / Electrocatalysis
-
-
[1] Y. B. Guo, Y. N. Chen, H. J. Cui, Z. Zhou, Chin. J. Catal., 2019, 40, 1298-1310.
-
[2] J. T. Ren, G. G. Yuan, L. Chen, C. C. Weng, Z. Y. Yuan, ACS Sustain. Chem. Eng., 2018, 6, 9793-9803.
-
[3] S. L. Zhao, D. W. Wang, R. Amal, L. M. Dai, Adv. Mater., 2019, 31, 1801526.
-
[4] F. Y. Cheng, J. Chen, Chem. Soc. Rev., 2012, 41, 2172-2192.
-
[5] J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, Z. W. Chen, Adv. Mater., 2017, 29, 1604685.
-
[6] H. Zhao, Z. P. Hu, Y. P. Zhu, L. Ge, Z. Y. Yuan, Chin. J. Catal., 2019, 40, 1366-1374.
-
[7] W. B. Luo, X. W. Gao, S. L. Chou, Y. M. Kang, J. Z. Wang, H. K. Liu, S. X. Dou, Adv. Energy Mater., 2017, 7, 1700234.
-
[8] H. Zhao, Z. Y. Yuan, Catal. Sci. Technol., 2017, 7, 330‒347.
-
[9] T. Huang, Y. Chen, J.-M. Lee, Small, 2017, 13, 17002753.
-
[10] F. Tang, H. T. Lei, S. J. Wang, H. X. Wang, Z. X. Jin, Nanoscale, 2017, 9, 17364-17370.
-
[11] Y. J. Song, J. T. Ren, G. G. Yuan, Y. Yao, Y. P. Liu, Z. Y. Yuan, J. Energy Chem., 2019, 38, 68-77.
-
[12] Z. X., Pei, Z. J. Tang, Z. X. Liu, Y. Huang, Y. K. Wang, H. F. Li, Q. Xue, M. S. Zhu, D. M. Tang, C. Y. Zhi, J. Mater. Chem. A, 2018, 6, 489-497.
-
[13] S. H. Ahn, A. Manthiram, Small, 2017, 13, 1702068.
-
[14] J. T. Ren, Z. Y. Yuan, J. Mater. Chem. A, 2019, 7, 13591-13601.
-
[15] J. Xiao, Q. Kuang, S. Yang, F. Xiao, S. Wang, L. Guo, Sci. Rep., 2013, 3, 2300.
-
[16] S. Dou, A. L. Shen, L. Tao, S. Y. Wang, Chem. Commun., 2014, 50, 10672-10675.
-
[17] Z. H. Huang, F. F. Sun, M. Batmunkh, W. H. Li, H. Li, Y. Sun, Q. Zhao, X. Liu, T. Y. Ma, J. Mater. Chem. A, 2019, 7, 11826-11835.
-
[18] D. M. Gao, Q. M. Gao, Microporous Mesoporous Mater., 2005, 85, 365-373.
-
[19] D. M. Feng, Y. Sun, Z. Q. Liu, Y. P. Zhu, T. Y. Ma, J. Nanosci. Nanotechnol., 2019, 19, 3079-3096.
-
[20] M. Pramanik, R. R. Salunkhe, M. Imura, Y. Yamauchi, ACS Appl. Mater. Interfaces, 2016, 8, 9790−9797.
-
[21] Y. Surendranath, M. W. Kanan, D. G. Nocera, J. Am. Chem. Soc., 2010, 132, 16501-16509.
-
[22] M. W. Kanan, D. G. Nocera, Science, 2008, 321, 1072-1075.
-
[23] D. A. Lutterman, Y, Surendranath, D. G. Nocera, J. Am. Chem. Soc., 2009, 131, 3838-3839.
-
[24] M. W. Kanan, Y. Surendranath, D. G. Nocera, Chem. Soc. Rev., 2009, 38, 109-114.
-
[25] B. Senthilkumar, Z. Khan, S. Park, I. Seo, H. Ko, Y. Kim, J. Power Sources, 2016, 311, 29-34.
-
[26] X. Z. Lin, Z. Z. Yang, L. N. He, Z. Y. Yuan, Green Chem., 2015, 17, 795-798.
-
[27] Y. P. Zhu, T. Y. Ma, T. Z. Ren, Z. Y. Yuan, ACS Appl. Mater. Interfaces, 2014, 6, 16344-16351.
-
[28] P. J. Feng, X. Cheng, J. T. Li, X. T. Luo, ChemistrySelect, 2018, 3, 760-764.
-
[29] Y. L. Liu, Y. P. Zhu, M. Li, Z. Y. Yuan, Acta Chim. Sin., 2014, 72, 521-536.
-
[30] D. Zhao, Q. Shao, Y. Zhang, X. Huang, Nanoscale, 2018, 10, 22787-22791.
-
[31] T. Zhou, Y. Du, S. Yin, X. Tian, H. Yang, X. Wang, B. Liu, H. Zheng, S. Qiao, R. Xu, Energy Environ. Sci., 2016, 9, 2563-2570.
-
[32] H. Li, Y. Sun, Z. Y. Yuan, Y. P. Zhu, T. Y. Ma, Angew. Chem. Int. Ed., 2018, 57, 3222-3227.
-
[33] Z. P. Hu, C. Chen, J. T. Ren, Z. Y. Yuan, Appl. Catal. A, 2018, 559, 85-93.
-
[34] l. Wang, H. Chen, Q. Daniel, L. Duan, B. Philippe, Y. Yang, H. Rensmo, L. C. Sun, Adv. Energy Mater., 2016, 6, 1600516.
-
[35] L. Chen, J.-T. Ren, Y. S. Wang, W. W. Tian, L. J. Gao, Z.-Y. Yuan, ACS Sustain. Chem. Eng., 2019, 7, 13559-13568.
-
[36] K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, R. Car, Nano Lett., 2008, 8, 36-41.
-
[37] Q. Liu, J. Q. Tian, W. Cui, P. Jiang, N. Y. Cheng, A. M. Asiri, X. P. Sun, Angew. Chem. Int. Ed., 2014, 53, 6710-6714.
-
[38] S. Dou, X. Li, L. Tao, J. Huo, S. Wang, Chem. Commun., 2016, 52, 9727-9730.
-
[39] Q. Li, P. Xu, W. Gao, S. Ma, G. Zhang, R. Cao, J. Cho, H. L. Wang, G. Wu, Adv. Mater., 2014, 26, 1378-1386.
-
[40] H. Wang, T. Maiyalagan, X. Wang, ACS Catal., 2012, 2, 781-794.
-
[41] W. Peng, L. Xiao, J. Lu, L. Zhuang, J. Energy Chem., 2019, 38, 78-83.
-
计量
- PDF下载量: 7
- 文章访问数: 3856
- HTML全文浏览量: 350