Citation: Zhi-Feng Jiao, Ji-Xiao Zhao, Xiao-Ning Guo, Xiang-Yun Guo. Photocatalytic C-X borylation of aryl halides by hierarchical SiC nanowire-supported Pd nanoparticles[J]. Chinese Journal of Catalysis, 2020, 41(2): 357-363. doi: S1872-2067(19)63449-2
具有分级结构的SiC纳米线负载的Pd纳米颗粒光催化芳基卤化物硼化反应
本文以具有分级结构且能够响应可见光的SiC纳米线为载体,并通过液相还原法制备负载量为3 wt%的Pd/SiC催化剂.TEM照片可以看出,Pd纳米颗粒均地分散在SiC表面,平均粒径为3.7nm.UV-Vis图谱表明,SiC负载Pd以后可明显提高其对可见光的吸收.Pd/SiC在可见光(400-800nm)照射下,在30℃和常压Ar氛围下即可实现碘苯脱碘硼化,苯硼酸频哪醇酯的收率高达95%.Pd/SiC在可见光作用下,对其它碘苯类和溴苯类化合物的光催化硼化均具有较好的的普适性.在暗反应条件下,苯硼酸频哪醇酯的收率仅为5%.并且,转化率能够随着光强度的增强而增加.同时,不同的波长范围对光反应的贡献率也不同,400-450,450-500,500-550,550-600和600-800nm的光反应贡献率分别为34%,22%,16%,13%和5%,这与催化剂的紫外可见吸收光谱相一致,充分说明反应主要为光驱动反应.Pd/SiC催化剂也具有较好的可重复使用性,经过5次循环使用后,催化活性依然保持在较高的水平.
光反应和暗反应活化能的显著差别,说明二者的机理不同.理论研究发现,SiC的功函为4.0eV,低于Pd (5.12eV),当Pd负载在SiC表面时,能够形成Mott-Schottky接触,使SiC吸收可见光生成的光生电子能够迅速的传递到Pd活性位.XPS表征显示,Pd在Pd/SiC催化剂中以金属态Pd0的形式存在,并向低结合能方向移动,说明SiC中的电子向Pd迁移,增加了Pd原子周围的电子云密度.同时,光致发光光谱中,Pd/SiC位于400-550nm的特征峰与SiC相比,强度明显减弱,说明光生电子和空穴的分离效率增强.据此我们推断,光生电子迅速从SiC传递到Pd使Pd活性位表面富电子化,进而快速活化和断裂芳基卤化物中的C-I或C-Br键,有效提高催化活性.
English
Photocatalytic C-X borylation of aryl halides by hierarchical SiC nanowire-supported Pd nanoparticles
-
-
[1] Boronic Acids:Preparation and Applications in Organic Synthesis and Medicine, D. Hall, Wiley-VCH, Weinheim, 2005.
-
[2] I. A. I. Mkhalid, J. H. Barnard, T. B. Marder, J. M. Murphy, J. F. Hartwig, Chem. Rev., 2010, 110, 890-931.
-
[3] J. F. Harwig, Chem. Soc. Rev., 2011, 40, 1992-2002.
-
[4] A. Ros, R. Fernández, J. M. Lassaletta, Chem. Soc. Rev., 2014, 43, 3229-3243.
-
[5] E. C. Neeve, S. J. Geier, I. A. I. Mkhalid, S. A. Westcott, R. B. Marder, Chem. Rev., 2016, 116, 9091-9161.
-
[6] L. Wang, W. Sun, C. Liu, Chin. J. Catal., 2018, 39, 1725-1729.
-
[7] E. Khotinsky, M. Melamed, Ber. Dtsch. Chem. Ges., 1909, 42, 3090-3096.
-
[8] F. R. Bean, J. R. Johnson, J. Am. Chem. Soc., 1932, 54, 4415-4425.
-
[9] R. L. Letsinger, I. H. Skoog, J. Org. Chem., 1953, 18, 895-897.
-
[10] H. C. Brown, G. W. Kramer, A. B. Levy, M. M. Midland ed., Organic Syntheses via Boranes, Wiley, New York, 1975.
-
[11] T. Ishiyama, N. Miyaura, J. Organomet. Chem., 2003, 680, 3-11.
-
[12] N. Miyaura, Bull. Chem. Soc. Jpn., 2008, 81, 1535-1553.
-
[13] J. F. Hartwig, Acc. Chem. Res., 2012, 45, 864-873.
-
[14] R. D. Dewhurst, E. C. Neeve, H. Braunschweig, T. B. Marder, Chem. Commun., 2015, 51, 9594-9607.
-
[15] W. K. Chow, O. Y. Yuen, P. Y. Choy, C. M. So, C. P. Lau, W. T. Wong, F. Y. Kwong, RSC Adv., 2013, 3, 12518-12539.
-
[16] T. C. Atack, R. M. Lecker, S. P. Cook, J. Am. Chem. Soc., 2014, 136, 9521-9523.
-
[17] R. B. Bedford, Acc. Chem. Res., 2015, 48, 1485-1493.
-
[18] C. Dai, G. Stringer, J. F. Corrigan, N. J. Taylor, T. B. Marder, N. C. Norman, J. Organomet. Chem., 1996, 513, 273-275.
-
[19] R. Frank, J. Howell, J. Campos, R. Tirfoin, N. Phillips, S. Zahn, D. M. P. Mingos, S. Aldridge, Angew. Chem. Int. Ed., 2015, 54, 9586-9590.
-
[20] P. K. Verma, S. Mandal, K. Geetharani, ACS Catal., 2018, 8, 4049-4054.
-
[21] X. W. Liu, J. Echavarren, C. Zarate, R. Martin, J. Am. Chem. Soc., 2015, 137, 12470-12473.
-
[22] T. Niwa, H. Ochiai, Y. Watanabe, T. Hosoya, J. Am. Chem. Soc., 2015, 137, 14313-14318.
-
[23] J. Zhou, M. W. Kuntze-Fechner, R. Bertermann, U. S. D. Paul, J. H. J. Berthel, A. Friedrich, Z. Du, T. B. Marder, U. Radius, J. Am. Chem. Soc., 2016, 138, 5250-5253.
-
[24] R. D. Grigg, R. Van Hoveln, J. M. Schomaker, J. Am. Chem. Soc., 2012, 134, 16131-16134.
-
[25] Y. Nagashima, R. Takita, K. Yoshida, K. Hirano, M. Uchiyama, J. Am. Chem. Soc., 2013, 135, 18730-18733.
-
[26] S. K. Bose, T. B. Marder, Org. Lett., 2014, 16, 4562-4565.
-
[27] S. K. Bose, A. Deißenberger, A. Eichhorn, P. G. Steel, Z. Lin, T. B. Marder, Angew. Chem. Int. Ed., 2015, 54, 11843-11847.
-
[28] L. Zhang, L. Jiao, J. Am. Chem. Soc., 2017, 139, 607-610.
-
[29] J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat. Rev. Chem., 2017, 1, 0052.
-
[30] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322-5363.
-
[31] J. R. Chen, X. Q. Hu, L. Q. Lu, W. J. Xiao, Acc. Chem. Res., 2016, 49, 1911-1923.
-
[32] H. Yi, G. Zhang, H. Wang, Z. Huang, J. Wang, A. K. Singh, A. Lei, Chem. Rev., 2017, 117, 9016-9085.
-
[33] J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102-113.
-
[34] X. Lang, J. Zhao, X. Chen, Chem. Soc. Rev., 2016, 45, 3026-3038.
-
[35] A. M. Mfuh, J. D. Doyle, B. Chhetri, H. D. Arman, O. V. Larionov, J. Am. Chem. Soc., 2016, 138, 2985-2988.
-
[36] A. M. Mfuh, V. T. Nguyen, B. Chhetri, J. E. Burch, J. D. Doyle, V. N. Nesterov, H. D. Arman, O. V. Larionov, J. Am. Chem. Soc., 2016, 138, 8408-8411.
-
[37] A. M. Mfuh, B. D. Schneider, W. Cruces, O. V. Larionov, Nat. Protoc., 2017, 12, 604-610.
-
[38] J. Yu, L. Zhang, G. Yan, Adv. Synth. Catal., 2012, 354, 2625-2628.
-
[39] S. Ahammed, S. Nandi, D. Kundu, B. C. Ranu, Tetrahedron Lett., 2016, 57, 1551-1554.
-
[40] M. Jiang, H. Yang, H. Fu, Org. Lett., 2016, 18, 5248-5251.
-
[41] L. Candish, M. Teders, F. Glorius, J. Am. Chem. Soc., 2017, 139, 7440-7443.
-
[42] Y. M. Tian, X. N. Guo, M. W. Kuntze-Fechner, I. Krummenacher, H. Braunschweig, U. Radius, A. Steffen, T. B. Marder, J. Am. Chem. Soc., 2018, 140, 17612-17623.
-
[43] Y. Zhu, K. Chenyan, A. T. Peng, A. Emi, W. Monalisa, L. K.-J. Louis, N. S. Hosmane, J. A. Maguire, Inorg. Chem., 2008, 47, 5756-5761.
-
[44] G. Yan, Y. Jiang, C. Kuang, S. Wang, H. Liu, Y. Zhang, J. Wang, Chem. Commun., 2010, 46, 3170-3172.
-
[45] O. Pascu, L. Marciasini, S. Marre, M. Vaultier, M. Pucheault, C. Aymonier, Nanoscale, 2013, 5, 12425-12431.
-
[46] S. Zhang, H. Wang, M. Li, J. Han, X. Liu, J. Gong, Chem. Sci., 2017, 8, 4489-4496.
-
[47] Z. Lin, N. C. Thacker, T. Sawano, T. Drake, P. Ji, G. Lan, L. Cao, S. Liu, C. Wang, W. Lin, Chem. Sci., 2018, 9, 143-151.
-
[48] H. B. Chandrashekar, A. Maji, G. Halder, S. Banerjee, S. Bhattacharyya, D. Maiti, Chem. Commun., 2019, 55, 6201-6204.
-
[49] D. H. van Dorp, N. Hijnen, M. Di Vece, J. J. Kelly, Angew. Chem. Int. Ed., 2009, 48, 6085-6088.
-
[50] Z. F. Jiao, Z. Y. Zhai, X. N. Guo, X. Y. Guo, J. Phys. Chem. C, 2015, 119, 3238-3243.
-
[51] B. Wang, X. N. Guo, G. Q. Jin, X. Y. Guo, Catal. Commun., 2017, 98, 81-84.
-
[52] X. W. Guo, C. H. Hao, C. Y. Wang, S. Sarina, X. N. Guo, X. Y. Guo, Catal. Sci. Technol., 2016, 6, 7738-7743.
-
[53] C. H. Hao, X. N. Guo, M. Sankar, H. Yang, B. Ma, Y. F. Zhang, X. L. Tong, G. Q. Jin, X. Y. Guo, ACS Appl. Mater. Interfaces, 2018, 10, 23029-23036.
-
[54] Y. J. Hao, G. Q. Jin, X. D. Han, X. Y. Guo, Mater. Lett., 2006, 60, 1334-1337.
-
[55] Y. J. Hao, J. B. Wagner, D. S. Su, G. Q. Jin, X. Y. Guo, Nanotechnology, 2006, 17, 2870-2874.
-
[56] S. Sarina, H. Y. Zhu, Q. Xiao, E. Jaatinen, J. Jia, Y. Huang, Z. Zheng, H. Wu, Angew. Chem. Int. Ed., 2014, 53, 2935-2940.
-
[57] Y. Wang, S. Li, J. Han, W. Wen, H. Wang, S. Dimitrijev, S. Zhang, RSC Adv., 2014, 4, 54441-54446.
-
[58] J. Zhang, J. Chen, L. Xin, M. Wang, Mater. Sci. Eng. B, 2014, 179, 6-11.
-
[59] M. A. Grela, M. E. J. Coronel, A. J. Colussi, J. Phys. Chem., 1996, 100, 16940-16946.
-
计量
- PDF下载量: 12
- 文章访问数: 3537
- HTML全文浏览量: 196