Citation: Hang Zhao, Zhangqian Liang, Xiang Liu, Pengyuan Qiu, Hongzhi Cui, Jian Tian. Noble metal-like behavior of plasmonic Bi particles deposited on reduced TiO2 microspheres for efficient full solar spectrum photocatalytic oxygen evolution[J]. Chinese Journal of Catalysis, 2020, 41(2): 333-340. doi: S1872-2067(19)63428-5
具有贵金属行为的等离子Bi纳米颗粒负载到还原TiO2微米球及其高效全光谱光催化产氧
由于贵金属纳米粒子具有表面等离子体共振(SPR)效应,将贵金属(如金或者银)与TiO2结合是将光催化剂的光吸收边扩展到更长的波长一种有效途径.然而,贵金属的价格限制了它们的商业化,因此需要低成本的金属作为替代品.最近,金属铋(Bi)被证明是贵金属的理想替代品,具有明显的SPR效应,在可见光甚至近红外范围具有优异的光吸收性能.通过光还原,化学还原,水热还原等还原方法,可以方便地获得金属Bi.然而,通过原位沉积的方法将金属Bi纳米粒子直接沉积到半导体表面仍然是一个很大的挑战.
本文采用双金属有机骨架衍生的合成策略,通过调节合成温度,将金属Bi原位沉积到还原TiO2微球表面(Bi@R-TiO2).采用X射线衍射,扫描电镜,透射电镜,X射线光电子能谱,漫反射光谱,光致发光光谱,阻抗,光电流响应等表征技术对制备样品的结构和光学性能进行了研究.结果表明,通过乙二醇可以将Ti4+还原为Ti3+得到还原的TiOx,Bi3+同时也被还原为金属Bi.当退火温度控制在300℃时,相应的Bi@R-TiO2-300表现出最高的全光谱光催化产氧活性(4728.709μmol h-1 g-1),分别是的纯TiO2和Bi-Ti双金属有机框架的5.9和9.5倍.这可归因于以下三点:(1)金属Bi作为“电子受体”,加速了TiO2向Bi的载流子转移;(2)负载到还原TiO2表面的金属Bi具有SPR效应可以增强可见光和近红外光的吸收能力;(3) Ti3+的产生进一步减小TiO2的禁带宽度.
English
Noble metal-like behavior of plasmonic Bi particles deposited on reduced TiO2 microspheres for efficient full solar spectrum photocatalytic oxygen evolution
-
Key words:
- Bi nanoparticles
- / Full solar spectrum
- / O2 evolution
- / Photocatalysis
- / Porous microspheres
-
-
[1] Y. Cheng, G. Yang, H. Jiang, S. Zhao, Q. Liu, Y. Xie, ACS Appl. Mater. Interfaces, 2018, 10, 38880-38891.
-
[2] Y. Ma, L. Yin, G. Cao, Q. Huang, M. He, W. Wei, H. Zhao, D. Zhang, M. Wang, T. Yang, Small, 2018, 14, 1703613.
-
[3] Y. Wang, W. Wei, X. Liu, Y. Gu, Sol. Energy Mater. Sol. Cells, 2012, 98, 129-145.
-
[4] P. Li, X. Duan, Y. Kuang, Y. Li, G. Zhang, W. Liu, X. Sun, Adv. Energy Mater., 2018, 8, 1703341.
-
[5] L. Hang, T. Zhang, Y. Sun, D. Men, X. Lyu, Q. Zhang, W. Cai, Y. Li, J. Mater. Chem. A, 2018, 6, 19555-19562.
-
[6] J. Guo, Y. Li, S. Zhu, Z. Chen, Q. Liu, D. Zhang, W. Moon, D. M. Song, RSC Adv., 2012, 1356-1363.
-
[7] A. R. Parent, R. H. Crabtree, G.W. Brudvig, Chem. Soc. Rev., 2013, 42, 2247-2252.
-
[8] K. Hashimoto, H. Irie, A. Fujishima, Assoc. Asia Pacific Phys. Soc. Bull., 2007, 17, 12-29.
-
[9] Y. Li, X. Deng, J. Tian, Z. Liang, H. Cui, Appl. Mater. Today, 2018, 13, 217-227
-
[10] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang, Y. Li, Nano Lett., 2011, 11, 3026-3033.
-
[11] F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, J. Am. Chem. Soc., 2010, 132, 11856-11857.
-
[12] J. Yan, Y. Zhang, S. Liu, G. Wu, L. Li, N. Guan, J. Mater. Chem. A, 2015, 3, 21434-21438.
-
[13] M. Tian, H. Wang, D. Sun, W. Peng, W. Tao, Int. J. Hydrogen Energy, 2014, 39, 13448-13453.
-
[14] K. H. Leong, B. L. Gan, S. Ibrahim, P. Saravanan, Appl. Surf. Sci., 2014, 319, 128-135.
-
[15] F. Dong, Z. Zhao, Y. Sun, Y. Zhang, S. Yan, Z. Wu, Environ. Sci. Technol., 2015, 49, 12432-12440.
-
[16] X. Li, W. Zhang, W. Cui, J. Li, Y. Sun, G. Jiang, H. Huang, Y. Zhang, F. Dong, Chem. Eng. J., 2019, 370, 1366-1375.
-
[17] Y. Sun, J. Liao, F. Dong, S. Wu, L. Sun, Chin. J. Catal., 2019, 4, 362-370.
-
[18] J. Li, W. Zhang, M. Ran, Y. Sun, H. Huang, F. Dong, Appl. Catal. B, 2019, 243, 313-321.
-
[19] Z. Wang, S. Yan, Y. Sun, T. Xiong, F. Dong, W. Zhang, Appl. Catal. B, 2017, 214, 148-157.
-
[20] U. W. Hamm, D. Kramer, R. S. Zhai, D. M. Kolb, Electrochim. Acta, 1998, 43, 2969-2978.
-
[21] X. Li, Y. Sun, T. Xiong, G. Jiang, Y. Zhang, Z. Wu, F. Dong, J. Catal., 2017, 352, 102-112.
-
[22] F. Dong, T. Xiong, Y. Sun, Z. Zhao, Y. Zhou, X. Feng, Z. Wu, Chem. Commun., 2014, 50, 10386-10389.
-
[23] S. Q. Saied, J. L. Sullivan, T. Choudhury, C. G. Pearce, Vacuum, 1988, 38, 917-922.
-
[24] J. Yin, Z. Xing, J. Kuang, Z. Li, M. Li, J. Jiang, S. Tan, Q. Zhu, W. Zhou, J. Alloys Compd., 2018, 750, 659-668.
-
[25] H. Xu, X. Hu, H. Yang, Y. Sun, C. Hu, Y. Huang, Adv. Energy Mater., 2015, 5, 1401882/1-1401882/7.
-
[26] Y. Min, K. Zhang, W. Zhao, F. Zheng, Y. Chen, Y. Zhang, Chem. Eng. J., 2012, 193-194, 203-210.
-
[27] Z. Zhao, W. Zhang, X. Lv, Y. Sun, F. Dong, Y. Zhang, Environ. Sci. Nano, 2016, 3, 1306-1317.
-
[28] L. Larini, D. Leporini, J. Chem. Phys., 2005, 123, 144907/1-144907/11.
-
[29] Z. D. Huang, T. T. Zhang, H. Lu, T. Masese, K. Yamamoto, R. Q. Liu, X. J. Lin, X. M. Feng, X. M. Liu, D. Wang, Y. Uchimoto, Y. W. Ma, Energy Storage Mater., 2018, 13, 329-339.
-
[30] M. Vila, A. Rivera-Calzada, E. Salas-Colera, G. R. Castro, C. Díaz-Guerra, Phys. Status Solidi. A, 2018, 215, 1800186.
-
[31] X. Hu, X. Liu, J. Tian, Y. Li, H. Cui, Catal. Sci. Technol., 2017, 7, 4193-4205.
-
[32] Z. Liang, X. Bai, P. Hao, Y. Guo, Y. Xue, J. Tian, H. Cui, Appl. Catal. B, 2019, 243, 711-720.
-
[33] B. Sun, Y. Qian, Z. Liang, Y. Guo, Y. Xue, J. Tian, H. Cui, Sol. Energy Mater. Sol. Cells, 2019, 195, 309-317.
-
[34] M. Schvartzman, V. Sidorov, D. Ritter, Y. Paz, Semicond. Sci. Technol., 2001, 16, L68.
-
[35] R. He, S. Cao, P. Zhou, J. Yu, Chin. J. Catal., 2014, 35, 989-1007.
-
[36] F. Dong, Q. Li, Y. Sun, W. K. Ho, ACS Catal., 2014, 4, 4341-4350.
-
[37] J. Tian, J. Li, N. Wei, X. Xu, H. Cui, H. Liu, Ceram. Int., 2016, 42, 1611-1617.
-
[38] H. Cheng, B. Huang, P. Wang, Z. Wang, Z. Lou, J. Wang, X. Qin, X. Zhang, Y. Dai, Chem. Commun., 2011, 47, 7054-7056.
-
计量
- PDF下载量: 12
- 文章访问数: 4144
- HTML全文浏览量: 376