Citation: Meiyu Cong, Deshuai Sun, Linlin Zhang, Xin Ding. In situ assembly of metal-organic framework-derived N-doped carbon/Co/CoP catalysts on carbon paper for water splitting in alkaline electrolytes[J]. Chinese Journal of Catalysis, 2020, 41(2): 242-248. doi: S1872-2067(19)63410-8
原位组装在碳纸上的有机金属骨架材料衍生的NC/Co/CoP催化剂用于碱性环境水分解
本文通过电泳的方法,将ZIF-67负载到碳纸上,进一步通过碳化、部分磷化过程得到NC/Co/CoP/CP催化电极.研究发现,在碱性环境(1mol/L KOH)下,催化电流达到10mA/cm2的析氢过电位只有208mV,析氧反应的过电位为350mV,在二电极体系中所需的电压也只有1.72V,催化活性明显高于通过传统方法组装的电极.在长时间的电化学稳定性测试中,经过20 h的电流测试和1000次的CV测试后,该电极的催化活性没有明显下降.我们报道了一种基于MOF材料的复合电极组装新方法,为MOF材料在能源储存与转化领域应用提供了新思路.
English
In situ assembly of metal-organic framework-derived N-doped carbon/Co/CoP catalysts on carbon paper for water splitting in alkaline electrolytes
-
-
[1] M. S. Dresselhaus, I. L. Thomas, Nature, 2001, 414, 332-337.
-
[2] X. Ding, L. L. Zhang, Y. Wang, A. H. Liu, Y. Gao, Coord. Chem. Rev., 2018, 357, 130-143.
-
[3] L. Zhang, M. Cong, Y. Wang, X. Ding, A. Liu, Y. Gao, ChemElectroChem, 2019, 6, 1329-1332.
-
[4] D. Y. Chung, S. W. Jun, G. Yoon, H. Kim, J. M. Yoo, K. S. Lee, T. Kim, H. Shin, A. K. Sinha, S. G. Kwon, K. Kang, T. Hyeon, Y. E. Sung, J. Am. Chem. Soc., 2017, 139, 6669-6674.
-
[5] Y. Tan, H. Wang, P. Liu, C. Cheng, F. Zhu, A. Hirata, M. Chen, Adv. Mater., 2016, 28, 2951-2955.
-
[6] J. X. Feng, S. Y. Tong, Y. X. Tong, G. R. Li, J. Am. Chem. Soc., 2018, 140, 5118-5126.
-
[7] L. Huang, L. Ai, M. Wang, J. Jiang, S. Wang, Int. J. Hydrogen Energy, 2019, 44, 965-976.
-
[8] M. Zhu, Y. Yan, Q. Yan, J. Yin, K. Cheng, K. Ye, K. Zhu, J. Yan, D. Cao, G. Wang, Int. J. Hydrogen Energy, 2019, DOI: 10.1016/j.ijhydene.2019.03.092.
-
[9] A. Indra, U. Paik, T. Song, Angew. Chem. Int. Ed., 2018, 57, 1241-1245.
-
[10] D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi, Y. Jia, N. Han, T. Gao, Q. Zhang, Y. Kuang, J. Pan, X. Sun, X. Duan, Adv. Energy Mater., 2018, 8, 1701905.
-
[11] Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, ACS Nano, 2018, 12, 245-253.
-
[12] F. S. Zhang, J. W. Wang, J. Luo, R. R. Liu, Z. M. Zhang, C. T. He, T. B. Lu, Chem. Sci., 2018, 9, 1375-1384.
-
[13] K. Fan, H. Chen, Y. Ji, H. Huang, P. M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, L. Sun, Nat. Commun., 2016, 7, 11981.
-
[14] X. Li, H. Lei, J. Liu, X. Zhao, S. Ding, Z. Zhang, X. Tao, W. Zhang, W. Wang, X. Zheng, R. Cao, Angew. Chem. Int. Ed., 2018, 57, 15070-15075.
-
[15] H. Li, X. Li, H. Lei, G. Zhou, W. Zhang, R. Cao, ChemSusChem, 2019, 12, 801-806.
-
[16] X. Li, H. Lei, X. Guo, X. Zhao, S. Ding, X. Gao, W. Zhang, R. Cao, ChemSusChem, 2017, 10, 4632-4641.
-
[17] W. Zhang, Y. Wu, J. Qi, M. Chen, R. Cao, Adv. Energy Mater., 2017, 7, 1602547.
-
[18] T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A. M. Asiri, X. Sun, L. Chen, ACS Catal., 2017, 7, 98-102.
-
[19] C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri, X. Sun, Adv. Mater., 2017, 29, 1602441.
-
[20] L. Zhang, X. Ding, M. Cong, Y. Wang, X. Zhang, Int. J. Hydrogen Energy, 2019, 44, 9203-9209.
-
[21] L. C. Gao, S. Chen, H. W. Zhang, Y. H. Zou, X. L. She, D. J. Yang, Q. S. Zhao, X. L. Zhao, Int. J. Hydrogen Energy, 2018, 43, 13904-13910.
-
[22] B. Chang, S. Hao, Z. Ye, Y. Yang, Chem. Commun., 2018, 54, 2393-2396.
-
[23] H. M. Sun, X. B. Xu, Z. H. Yan, X. Chen, F. Y. Cheng, P. S. Weiss, J. Chen, Chem. Mater., 2017, 29, 8539-8547.
-
[24] R. Zhang, C. Zhang, W. Chen, J. Mater. Chem. A, 2016, 4, 18723-18729.
-
[25] Z. Fang, L. Peng, Y. Qian, X. Zhang, Y. Xie, J. J. Cha, G. Yu, J. Am. Chem. Soc., 2018, 140, 5241-5247.
-
[26] X. Gao, W. Chen, Chem. Commun., 2017, 53, 9733-9736.
-
[27] F. Zheng, C. Zhang, X. Gao, C. Du, Z. Zhuang, W. Chen, Electrochim. Acta, 2019, 306, 627-634.
-
[28] P. Li, W. Chen, Chin. J. Catal., 2019, 40, 4-22.
-
[29] X. Gao, G. Yu, L. Zheng, C. Zhang, H. Li, T. Wang, P. An, M. Liu, X. Qiu, W. Chen, W. Chen, ACS Appl. Energy Mater., 2019, 2, 966-973.
-
[30] Y. Sun, C. Wang, T. Ding, J. Zuo, Q. Yang, Nanoscale, 2016, 8, 18887-18892.
-
[31] Y. Ma, X. Dai, M. Liu, J. Yong, H. Qiao, A. Jin, Z. Li, X. Huang, H. Wang, X. Zhang, ACS Appl. Mater. Interfaces, 2016, 8, 34396-34404.
-
[32] Q. Wang, L. Shang, R. Shi, X. Zhang, Y. Zhao, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Energy Mater., 2017, 7, 1700467.
-
[33] J. Zhou, Y.B. Dou, A. Zhou, R. M. Guo, M. J. Zhao, J. R. Li, Adv. Energy Mater., 2017, 7, 1602643.
-
[34] S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy, 2016, 1, 16184.
-
[35] D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn, M. Dinca, Nat. Mater., 2017, 16, 220-224.
-
[36] Z. Jiang, Z. Li, Z. Qin, H. Sun, X. Jiao, D. Chen, Nanoscale, 2013, 5, 11770-11775.
-
[37] H. Sun, Y. Lian, C. Yang, L. Xiong, P. Qi, Q. Mu, X. Zhao, J. Guo, Z. Deng, Y. Peng, Energy Environ. Sci., 2018, 11, 2363-2371.
-
[38] H. Tabassum, W. H. Guo, W. Meng, A. Mahmood, R. Zhao, Q. F. Wang, R. Q. Zou, Adv. Energy Mater., 2017, 7, 1601671.
-
[39] M. Ledendecker, J. S. Mondschein, O. Kasian, S. Geiger, D. Gohl, M. Schalenbach, A. Zeradjanin, S. Cherevko, R. E. Schaak, K. Mayrhofer, Angew. Chem. Int. Ed., 2017, 56, 9767-9771.
-
[40] H. F. Liang, A. N. Gandi, D. H. Anjum, X. B. Wang, U. Schwingenschlogl, H. N. Alshareef, Nano Lett., 2016, 16, 7718-7725.
-
[41] A. Han, H. Zhang, R. Yuan, H. Ji, P. Du, ACS Appl. Mater. Interfaces, 2017, 9, 2240-2248.
-
[42] Y. Wang, B. Kong, D. Y. Zhao, H. T. Wang, C. Selomulya, Nano Today, 2017, 15, 26-55.
-
[43] J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
-
[44] J. Song, C. Zhu, B. Z. Xu, S. Fu, M. H. Engelhard, R. Ye, D. Du, S. P. Beckman, Y. Lin, Adv. Energy Mater., 2017, 7, 1601555.
-
[45] M. J. Liu, L. M. Yang, T. Liu, Y. H. Tang, S. L. Luo, C. B. Liu, Y. X. Zeng, J. Mater. Chem. A, 2017, 5, 8608-8615.
-
[46] C. C. Du, M. X. Shang, J. X. Mao, W. B. Song, J. Mater. Chem. A, 2017, 5, 15940-15949.
-
[47] Z.-H. Xue, H. Su, Q.-Y. Yu, B. Zhang, H.-H. Wang, X.-H. Li, J.-S. Chen, Adv. Energy Mater., 2017, 7, 1602355.
-
[48] B. Weng, W. Wei, Yiliguma, H. Wu, A. M. Alenizi, G. Zheng, J. Mater. Chem. A, 2016, 4, 15353-15360.
-
[49] X. Liu, J. M. Dong, B. You, Y. J. Sun, Rsc Adv., 2016, 6, 73336-73342.
-
[50] P. He, X. Y. Yu, X. W. Lou, Angew. Chem. Int. Ed., 2017, 56, 3897-3900.
-
[51] X. F. Lu, L. F. Gu, J. W. Wang, J. X. Wu, P. Q. Liao, G. R. Li, Adv. Mater., 2017, 29, 1604437.
-
[52] L. Wang, Y. Wu, R. Cao, L. Ren, M. Chen, X. Feng, J. Zhou, B. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 16736-16743.
-
[53] H. Hu, B. Guan, B. Xia, X. W. Lou, J. Am. Chem. Soc., 2015, 137, 5590-5595.
-
[54] Y. Liu, B. Huang, X. Hu, Z. Xie, Int. J. Hydrogen Energy, 2019, 44, 3702-3710.
-
[55] B. Zhang, Y. Li, M. Valvo, L. Fan, Q. Daniel, P. Zhang, L. Wang, L. Sun, ChemSusChem, 2017, 10, 4472-4478.
-
[56] J. Creus, R. Matheu, I. Penafiel, D. Moonshiram, P. Blondeau, J. Benet-Buchholz, J. Garcia-Anton, X. Sala, C. Godard, A. Llobet, Angew. Chem. Int. Ed., 2016, 55, 15382-15386.
-
[57] J. Wang, L. Ji, S. Zuo, Z. Chen, Adv. Energy Mater., 2017, 1700107.
-
[58] Y. Gao, F. Wu, H. Chen, J. Energy Chem., 2017, 26, 428-432.
-
[59] X. Y. Zhang, W. L. Gu, E. K. Wang, J. Mater. Chem. A, 2017, 5, 982-987.
-
[60] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.
-
[61] P. Liu, J. A. Rodriguez, J. Am. Chem. Soc., 2005, 127, 14871-14878.
-
[62] H. Lin, W. Zhang, Z. Shi, M. Che, X. Yu, Y. Tang, Q. Gao, ChemSusChem, 2017, 10, 2597-2604.
-
[63] Y. Zhang, X. Xia, X. Cao, B. Zhang, N. H. Tiep, H. He, S. Chen, Y. Huang, H. J. Fan, Adv. Energy Mater., 2017, 1700220.
-
计量
- PDF下载量: 19
- 文章访问数: 3806
- HTML全文浏览量: 260