原位组装在碳纸上的有机金属骨架材料衍生的NC/Co/CoP催化剂用于碱性环境水分解

丛美钰 孙德帅 张林林 丁欣

引用本文: 丛美钰,  孙德帅,  张林林,  丁欣. 原位组装在碳纸上的有机金属骨架材料衍生的NC/Co/CoP催化剂用于碱性环境水分解[J]. 催化学报, 2020, 41(2): 242-248. doi: S1872-2067(19)63410-8 shu
Citation:  Meiyu Cong,  Deshuai Sun,  Linlin Zhang,  Xin Ding. In situ assembly of metal-organic framework-derived N-doped carbon/Co/CoP catalysts on carbon paper for water splitting in alkaline electrolytes[J]. Chinese Journal of Catalysis, 2020, 41(2): 242-248. doi: S1872-2067(19)63410-8 shu

原位组装在碳纸上的有机金属骨架材料衍生的NC/Co/CoP催化剂用于碱性环境水分解

  • 基金项目:

    国家自然科学基金(21573033);山东省自然科学基金(ZR2018BB037);山东省高等教育科技计划(J17KA104);青岛科技应用基础研究计划(18-2-2-10-jch,18-2-2-35-jch).

摘要: 随着世界工业经济的发展,作为不可再生能源的化石燃料消耗日趋增大并带来严重的环境污染.氢能具有能量密度高、燃烧无污染等优点,被认为是替换传统化石燃料的理想能源之一.通过电化学方法实现水裂解制氢是既满足环境要求又符合氢气生产需要的一种潜在有效方法,受到人们广泛关注.基于铂、钌等贵金属的电催化剂在水裂解中具有很高的活性,然而其稀缺性和高成本是阻碍其大规模实际应用的重要因素.水裂解制氢包括二电子转移的质子还原和四电子转移的水氧化两个过程.相对于质子还原,水氧化反应动力学过程缓慢,是决定水裂解速率的关键.通常,质子还原反应倾向于在酸性条件下进行,而水氧化反应在碱性环境下更有利,反应条件的差异阻碍了水裂解制氢的发展.因此,制备在碱性环境下具有高催化性能、高稳定性和低成本的催化剂是促进水裂解制氢能源技术进一步发展的关键.金属有机骨架(MOF)衍生的复合催化剂具有良好的催化性能和广阔的应用前景,在催化反应中得到越来越多的重视.传统的催化剂组装方式是通过全氟磺酸聚合物等辅助剂将催化剂组装到工作电极上,这些辅助剂具有较强的酸性,而且会覆盖催化剂表面的催化活性位点,降低催化剂比表面积,阻碍催化剂活性的进一步提升.
本文通过电泳的方法,将ZIF-67负载到碳纸上,进一步通过碳化、部分磷化过程得到NC/Co/CoP/CP催化电极.研究发现,在碱性环境(1mol/L KOH)下,催化电流达到10mA/cm2的析氢过电位只有208mV,析氧反应的过电位为350mV,在二电极体系中所需的电压也只有1.72V,催化活性明显高于通过传统方法组装的电极.在长时间的电化学稳定性测试中,经过20 h的电流测试和1000次的CV测试后,该电极的催化活性没有明显下降.我们报道了一种基于MOF材料的复合电极组装新方法,为MOF材料在能源储存与转化领域应用提供了新思路.

English

    1. [1] M. S. Dresselhaus, I. L. Thomas, Nature, 2001, 414, 332-337.

    2. [2] X. Ding, L. L. Zhang, Y. Wang, A. H. Liu, Y. Gao, Coord. Chem. Rev., 2018, 357, 130-143.

    3. [3] L. Zhang, M. Cong, Y. Wang, X. Ding, A. Liu, Y. Gao, ChemElectroChem, 2019, 6, 1329-1332.

    4. [4] D. Y. Chung, S. W. Jun, G. Yoon, H. Kim, J. M. Yoo, K. S. Lee, T. Kim, H. Shin, A. K. Sinha, S. G. Kwon, K. Kang, T. Hyeon, Y. E. Sung, J. Am. Chem. Soc., 2017, 139, 6669-6674.

    5. [5] Y. Tan, H. Wang, P. Liu, C. Cheng, F. Zhu, A. Hirata, M. Chen, Adv. Mater., 2016, 28, 2951-2955.

    6. [6] J. X. Feng, S. Y. Tong, Y. X. Tong, G. R. Li, J. Am. Chem. Soc., 2018, 140, 5118-5126.

    7. [7] L. Huang, L. Ai, M. Wang, J. Jiang, S. Wang, Int. J. Hydrogen Energy, 2019, 44, 965-976.

    8. [8] M. Zhu, Y. Yan, Q. Yan, J. Yin, K. Cheng, K. Ye, K. Zhu, J. Yan, D. Cao, G. Wang, Int. J. Hydrogen Energy, 2019, DOI: 10.1016/j.ijhydene.2019.03.092.

    9. [9] A. Indra, U. Paik, T. Song, Angew. Chem. Int. Ed., 2018, 57, 1241-1245.

    10. [10] D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi, Y. Jia, N. Han, T. Gao, Q. Zhang, Y. Kuang, J. Pan, X. Sun, X. Duan, Adv. Energy Mater., 2018, 8, 1701905.

    11. [11] Y. Gu, S. Chen, J. Ren, Y. A. Jia, C. Chen, S. Komarneni, D. Yang, X. Yao, ACS Nano, 2018, 12, 245-253.

    12. [12] F. S. Zhang, J. W. Wang, J. Luo, R. R. Liu, Z. M. Zhang, C. T. He, T. B. Lu, Chem. Sci., 2018, 9, 1375-1384.

    13. [13] K. Fan, H. Chen, Y. Ji, H. Huang, P. M. Claesson, Q. Daniel, B. Philippe, H. Rensmo, F. Li, Y. Luo, L. Sun, Nat. Commun., 2016, 7, 11981.

    14. [14] X. Li, H. Lei, J. Liu, X. Zhao, S. Ding, Z. Zhang, X. Tao, W. Zhang, W. Wang, X. Zheng, R. Cao, Angew. Chem. Int. Ed., 2018, 57, 15070-15075.

    15. [15] H. Li, X. Li, H. Lei, G. Zhou, W. Zhang, R. Cao, ChemSusChem, 2019, 12, 801-806.

    16. [16] X. Li, H. Lei, X. Guo, X. Zhao, S. Ding, X. Gao, W. Zhang, R. Cao, ChemSusChem, 2017, 10, 4632-4641.

    17. [17] W. Zhang, Y. Wu, J. Qi, M. Chen, R. Cao, Adv. Energy Mater., 2017, 7, 1602547.

    18. [18] T. Liu, X. Ma, D. Liu, S. Hao, G. Du, Y. Ma, A. M. Asiri, X. Sun, L. Chen, ACS Catal., 2017, 7, 98-102.

    19. [19] C. Tang, R. Zhang, W. Lu, L. He, X. Jiang, A. M. Asiri, X. Sun, Adv. Mater., 2017, 29, 1602441.

    20. [20] L. Zhang, X. Ding, M. Cong, Y. Wang, X. Zhang, Int. J. Hydrogen Energy, 2019, 44, 9203-9209.

    21. [21] L. C. Gao, S. Chen, H. W. Zhang, Y. H. Zou, X. L. She, D. J. Yang, Q. S. Zhao, X. L. Zhao, Int. J. Hydrogen Energy, 2018, 43, 13904-13910.

    22. [22] B. Chang, S. Hao, Z. Ye, Y. Yang, Chem. Commun., 2018, 54, 2393-2396.

    23. [23] H. M. Sun, X. B. Xu, Z. H. Yan, X. Chen, F. Y. Cheng, P. S. Weiss, J. Chen, Chem. Mater., 2017, 29, 8539-8547.

    24. [24] R. Zhang, C. Zhang, W. Chen, J. Mater. Chem. A, 2016, 4, 18723-18729.

    25. [25] Z. Fang, L. Peng, Y. Qian, X. Zhang, Y. Xie, J. J. Cha, G. Yu, J. Am. Chem. Soc., 2018, 140, 5241-5247.

    26. [26] X. Gao, W. Chen, Chem. Commun., 2017, 53, 9733-9736.

    27. [27] F. Zheng, C. Zhang, X. Gao, C. Du, Z. Zhuang, W. Chen, Electrochim. Acta, 2019, 306, 627-634.

    28. [28] P. Li, W. Chen, Chin. J. Catal., 2019, 40, 4-22.

    29. [29] X. Gao, G. Yu, L. Zheng, C. Zhang, H. Li, T. Wang, P. An, M. Liu, X. Qiu, W. Chen, W. Chen, ACS Appl. Energy Mater., 2019, 2, 966-973.

    30. [30] Y. Sun, C. Wang, T. Ding, J. Zuo, Q. Yang, Nanoscale, 2016, 8, 18887-18892.

    31. [31] Y. Ma, X. Dai, M. Liu, J. Yong, H. Qiao, A. Jin, Z. Li, X. Huang, H. Wang, X. Zhang, ACS Appl. Mater. Interfaces, 2016, 8, 34396-34404.

    32. [32] Q. Wang, L. Shang, R. Shi, X. Zhang, Y. Zhao, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Energy Mater., 2017, 7, 1700467.

    33. [33] J. Zhou, Y.B. Dou, A. Zhou, R. M. Guo, M. J. Zhao, J. R. Li, Adv. Energy Mater., 2017, 7, 1602643.

    34. [34] S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy, 2016, 1, 16184.

    35. [35] D. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn, M. Dinca, Nat. Mater., 2017, 16, 220-224.

    36. [36] Z. Jiang, Z. Li, Z. Qin, H. Sun, X. Jiao, D. Chen, Nanoscale, 2013, 5, 11770-11775.

    37. [37] H. Sun, Y. Lian, C. Yang, L. Xiong, P. Qi, Q. Mu, X. Zhao, J. Guo, Z. Deng, Y. Peng, Energy Environ. Sci., 2018, 11, 2363-2371.

    38. [38] H. Tabassum, W. H. Guo, W. Meng, A. Mahmood, R. Zhao, Q. F. Wang, R. Q. Zou, Adv. Energy Mater., 2017, 7, 1601671.

    39. [39] M. Ledendecker, J. S. Mondschein, O. Kasian, S. Geiger, D. Gohl, M. Schalenbach, A. Zeradjanin, S. Cherevko, R. E. Schaak, K. Mayrhofer, Angew. Chem. Int. Ed., 2017, 56, 9767-9771.

    40. [40] H. F. Liang, A. N. Gandi, D. H. Anjum, X. B. Wang, U. Schwingenschlogl, H. N. Alshareef, Nano Lett., 2016, 16, 7718-7725.

    41. [41] A. Han, H. Zhang, R. Yuan, H. Ji, P. Du, ACS Appl. Mater. Interfaces, 2017, 9, 2240-2248.

    42. [42] Y. Wang, B. Kong, D. Y. Zhao, H. T. Wang, C. Selomulya, Nano Today, 2017, 15, 26-55.

    43. [43] J. Tian, Q. Liu, A. M. Asiri, X. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.

    44. [44] J. Song, C. Zhu, B. Z. Xu, S. Fu, M. H. Engelhard, R. Ye, D. Du, S. P. Beckman, Y. Lin, Adv. Energy Mater., 2017, 7, 1601555.

    45. [45] M. J. Liu, L. M. Yang, T. Liu, Y. H. Tang, S. L. Luo, C. B. Liu, Y. X. Zeng, J. Mater. Chem. A, 2017, 5, 8608-8615.

    46. [46] C. C. Du, M. X. Shang, J. X. Mao, W. B. Song, J. Mater. Chem. A, 2017, 5, 15940-15949.

    47. [47] Z.-H. Xue, H. Su, Q.-Y. Yu, B. Zhang, H.-H. Wang, X.-H. Li, J.-S. Chen, Adv. Energy Mater., 2017, 7, 1602355.

    48. [48] B. Weng, W. Wei, Yiliguma, H. Wu, A. M. Alenizi, G. Zheng, J. Mater. Chem. A, 2016, 4, 15353-15360.

    49. [49] X. Liu, J. M. Dong, B. You, Y. J. Sun, Rsc Adv., 2016, 6, 73336-73342.

    50. [50] P. He, X. Y. Yu, X. W. Lou, Angew. Chem. Int. Ed., 2017, 56, 3897-3900.

    51. [51] X. F. Lu, L. F. Gu, J. W. Wang, J. X. Wu, P. Q. Liao, G. R. Li, Adv. Mater., 2017, 29, 1604437.

    52. [52] L. Wang, Y. Wu, R. Cao, L. Ren, M. Chen, X. Feng, J. Zhou, B. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 16736-16743.

    53. [53] H. Hu, B. Guan, B. Xia, X. W. Lou, J. Am. Chem. Soc., 2015, 137, 5590-5595.

    54. [54] Y. Liu, B. Huang, X. Hu, Z. Xie, Int. J. Hydrogen Energy, 2019, 44, 3702-3710.

    55. [55] B. Zhang, Y. Li, M. Valvo, L. Fan, Q. Daniel, P. Zhang, L. Wang, L. Sun, ChemSusChem, 2017, 10, 4472-4478.

    56. [56] J. Creus, R. Matheu, I. Penafiel, D. Moonshiram, P. Blondeau, J. Benet-Buchholz, J. Garcia-Anton, X. Sala, C. Godard, A. Llobet, Angew. Chem. Int. Ed., 2016, 55, 15382-15386.

    57. [57] J. Wang, L. Ji, S. Zuo, Z. Chen, Adv. Energy Mater., 2017, 1700107.

    58. [58] Y. Gao, F. Wu, H. Chen, J. Energy Chem., 2017, 26, 428-432.

    59. [59] X. Y. Zhang, W. L. Gu, E. K. Wang, J. Mater. Chem. A, 2017, 5, 982-987.

    60. [60] H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.

    61. [61] P. Liu, J. A. Rodriguez, J. Am. Chem. Soc., 2005, 127, 14871-14878.

    62. [62] H. Lin, W. Zhang, Z. Shi, M. Che, X. Yu, Y. Tang, Q. Gao, ChemSusChem, 2017, 10, 2597-2604.

    63. [63] Y. Zhang, X. Xia, X. Cao, B. Zhang, N. H. Tiep, H. He, S. Chen, Y. Huang, H. J. Fan, Adv. Energy Mater., 2017, 1700220.

  • 加载中
计量
  • PDF下载量:  19
  • 文章访问数:  3806
  • HTML全文浏览量:  260
文章相关
  • 收稿日期:  2019-04-17
  • 修回日期:  2019-05-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章