Citation: Liu Qishun, Lü Yufen, Bao Pengli, Yue Huilan, Wei Wei. Recent Progress in the Synthesis of N-Substituted-1, 2, 3-triazoles[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4015-4030. doi: 10.6023/cjoc202008042 shu

Recent Progress in the Synthesis of N-Substituted-1, 2, 3-triazoles

  • Corresponding author: Bao Pengli, baopengli1992@163.com Yue Huilan, hlyue@nwipb.cas.cn Wei Wei, weiweiqfnu@163.com
  • Received Date: 24 August 2020
    Revised Date: 28 September 2020
    Available Online: 13 October 2020

    Fund Project: Project supported by the Youth Innovation and Technology Project of Shandong Province (No. 2019KJC021), the Natural Science Foundation of Shandong Province (No. ZR2018MB009) and the International Cooperation Project of Qinghai Province (No. 2018-HZ-806)the International Cooperation Project of Qinghai Province 2018-HZ-806the Youth Innovation and Technology Project of Shandong Province 2019KJC021the Natural Science Foundation of Shandong Province ZR2018MB009

Figures(54)

  • N-Substituted-1, 2, 3-triazoles are an important class of nitrogen-containing hetrocyclic compounds, which exhibited wide applications in various fields such as medicinal chemistry, synthetic chemistry and materials. Therefore, their synthetic methods have attracted great attention of chemists. Herein, the recent research progress in the synthesis of N-substituted-1, 2, 3-triazoles is summarized. The synthetic routes and reaction mechanisms from raw materials such as azide compounds, diazo compounds, TsNHNH2, hydrazones and NH-1, 2, 3-triazoles are introduced and reviewed, respectively. Finally, the future development of this field is also prospected.
  • 加载中
    1. [1]

    2. [2]

      (a) Chu, C.; Liu, R. Chem. Soc. Rev. 2011, 40, 2177.
      (b) Lau, Y. H.; Rutledge, P. J.; Watkinson, M.; Todd, M. H. Chem. Soc. Rev. 2011, 40, 2848.
      (c) Johnson, T. C.; Totty, W. G.; Wills, M. Org. Lett. 2012, 14, 5230.

    3. [3]

      (a) Astruc, D.; Liang, L.; Rapakousiou, A.; Ruiz, J. Chem. Res. 2012, 45, 630.
      (b) Muller, T.; Bräse, S. Angew. Chem., Int. Ed. 2011, 50, 11844.

    4. [4]

      (a) Wang, W.; Peng, X.; Wei, F.; Tung, C.-H.; Xu, Z. Angew. Chem., Int. Ed. 2016, 55, 649.
      (b) Cheung, K. P. S.; Tsui, G. C. Org. Lett. 2017, 19, 2881.

    5. [5]

      (a) Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Chem. Rev. 2013, 113, 4905.
      (b) Wang, K.; Chen, M.; Wang, Q.; Shi, X.; Lee, J. K. J. Org. Chem. 2013, 78, 7249.

    6. [6]

    7. [7]

      (a) Quan, X. J.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Org. Lett. 2014, 16, 5728.
      (b) Chen, C. Y.; Lee, P. H.; Lin, Y. Y.; Yu, W. T.; Hu, W. P.; Hsu, C. C.; Lin, Y. T.; Chang, L. S.; Hsiao, C. T.; Wang, J. J.; Chung, M. L. Bioorg. Med. Chem. Lett. 2013, 23, 6854.

    8. [8]

    9. [9]

      Kalisiak, J.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2008, 10, 3171.  doi: 10.1021/ol8006748

    10. [10]

      Zhang, Y.; Li, X.; Li, J.; Chen, J.; Meng, X.; Zhao, M.; Chen, B. Org. Lett. 2012, 14, 26.  doi: 10.1021/ol202718d

    11. [11]

      Kamijo, S.; Jin, T.; Huo, Z. B.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 7786.  doi: 10.1021/ja034191s

    12. [12]

      Phanindrudu, M.; Tiwari, D. K.; Aravilli, V. K.; Bhardwaj, K. C.; Sabapathi, G.; Likhar, P. R. Eur. J. Org. Chem. 2016, 27, 4629.

    13. [13]

      Shen, T.; Huang, X.; Liang, Y.-F.; Jiao, N. Org. Lett. 2015, 17, 6186.  doi: 10.1021/acs.orglett.5b03179

    14. [14]

      Chen, J.; Liang, T.; Zhao, H.; Lin, C.; Chen, L.; Zhang, M. Org. Biomol. Chem. 2019, 17, 4843.  doi: 10.1039/C9OB00686A

    15. [15]

      Bao, P. L.; Yue, H.; Meng, N.; Zhao, X.; Li, J.; Wei, W. Org. Lett. 2019, 21, 7218.  doi: 10.1021/acs.orglett.9b02295

    16. [16]

      Bao, P. L.; Meng, N.; Lv, Y.; Yue, H.; Li, J.; Wei, W. Org. Chem. Front. 2019, 6, 3983.  doi: 10.1039/C9QO01277J

    17. [17]

      Virant, M.; Košmrlj, J. J. Org. Chem. 2019, 84, 14030.  doi: 10.1021/acs.joc.9b02197

    18. [18]

      Cui, F.; Chen, J.; Mo, Z.; Su, S.; Chen, Y.; Ma, X.; Tang, H.; Wang, H.; Pan, Y.; Xu, Y. Org. Lett. 2018, 20, 925.  doi: 10.1021/acs.orglett.7b03734

    19. [19]

      Jana, S.; Thomas, J.; Dehaen, W. J. Org. Chem. 2016, 81, 12426.  doi: 10.1021/acs.joc.6b02607

    20. [20]

      Chen, Y. F.; Nie, G.; Zhang, Q.; Ma, S.; Li, H.; Hu, Q. Q. Org. Lett. 2015, 17, 1118.  doi: 10.1021/ol503687w

    21. [21]

      Liu, Y.; Nie, G.; Zhou, Z.; Jia, L.; Chen, Y. J. Org. Chem. 2017, 82, 9198.  doi: 10.1021/acs.joc.7b01429

    22. [22]

      Kumar, N.; Ansari, M. Y.; Kumart, A. Chem. Commun. 2018, 54, 2627.  doi: 10.1039/C7CC09934G

    23. [23]

      Wei, F.; Li, H.; Song, C.; Ma, Y.; Zhou, L.; Tung, C.-H.; Xu, Z. H. Org. Lett. 2015, 17, 2860.  doi: 10.1021/acs.orglett.5b01342

    24. [24]

      Wang, W. G.; Peng, X. L.; Wei, F.; Tung, C. H.; Xu, Z. H. Angew. Chem., Int. Ed. 2016, 55, 649.  doi: 10.1002/anie.201509124

    25. [25]

      (a) Wang, W.; Wei, F.; Ma, Y.; Tung, C.-H.; Xu, Z. H. Org. Lett. 2016, 18, 4158.
      (b) Wang, W.; Lin, Y.; Ma, Y.; Tung, C.-H.; Xu, Z. H. Org. Lett. 2018, 20, 2956.

    26. [26]

      Shang, J. Q.; Fu, H.; Li, Y.; Yang, T.; Gao, C. Z.; Li, Y. M. Tetrahedron 2019, 75, 253.  doi: 10.1016/j.tet.2018.11.054

    27. [27]

      (a) Chen, Y.; Liu, Y.; Petersena, J. L.; Shi, X. Chem. Commun. 2008, 3254.
      (b) Liu, Y.; Yan, W.; Chen, Y.; Petersen, J. L.; Shi, X. Org. Lett. 2008, 10, 5389.
      (c) Wang, X.; Sidhu, K.; Zhang, L.; Campbell, S.; Haddad, N.; Reeves, D. C.; Krishnamurthy, D.; Senanayake, C. H. Org. Lett. 2009, 11, 5490.
      (d) Zhang, C.; Zheng, L.; Yan, Q.; Hu, Q.; Jia, F.; Chen, Y. ChemistrySelect 2018, 3, 10277.

    28. [28]

      Aruri, H.; Singh, U.; Sharma, S.; Gudup, S.; Bhogal, M.; Kumar, S.; Singh, D.; Gupta, V. K.; Kant, R.; Vishwakarma, R. A.; Singh. P. P. J. Org. Chem. 2015, 80, 1929.  doi: 10.1021/jo502477r

    29. [29]

      Deng, X. C.; Lei, X.; Nie, G.; Jia, L. H.; Li, Y. X.; Chen, Y. F. J. Org. Chem. 2017, 82, 6163.  doi: 10.1021/acs.joc.7b00752

    30. [30]

      Zhang, L. L.; Yi, H.; Wang, J.; Lei, A. W. J. Org. Chem. 2017, 82, 10704.  doi: 10.1021/acs.joc.7b01841

    31. [31]

      Wu, J.; Zhou, Y.; Zhou, Y.; Chiang, C. W.; Lei, A. W. ACS Catal. 2017, 7, 8320.  doi: 10.1021/acscatal.7b03551

    32. [32]

      Berthold, D.; Breit, B. Org. Lett. 2018, 20, 598.  doi: 10.1021/acs.orglett.7b03708

    33. [33]

      Luo, G. L.; Sun, C. Y.; Li, Y.; Li, X. X.; Zhao, Z. RSC Adv. 2018, 8, 27610.  doi: 10.1039/C8RA04790A

    34. [34]

      Chen, Z.; Cao, G.; Song, J.; Ren, H. Chin. J. Chem. 2017, 35, 1797.  doi: 10.1002/cjoc.201700459

    35. [35]

      Hanselmann, R.; Job, G. E.; Johnson, G.; Lou, R.; Martynow, J. G.; Reeve, M. M. Org. Process Res. Dev. 2010, 14, 152.  doi: 10.1021/op900252a

    36. [36]

      van Berkel, S. S.; Brauch, S.; Gabriel, L.; Henze, M.; Stark, S.; Va-silev, D.; Wessjohann, L. A.; Abbas, M.; Westermann, B. Angew. Chem., Int. Ed. 2012, 51, 5343.  doi: 10.1002/anie.201108850

    37. [37]

      (a) Fçhlisch, B.; Flogaus, R. Synthesis 1984, 734.
      (b) Bangalore, J.; Llavona, L.; Concellon, J. M.; Yus, M. J. Chem. Soc., Perkin Trans. 1 1991, 297.

    38. [38]

      (a) Chen, Z.; Yan, Q.; Liu, Z.; Xu, Y.; Zhang, Y. Angew. Chem., Int. Ed. 2013, 52, 13324.
      (b) Chen, Z.; Yan, Q.; Yi, H.; Liu, Z.; Lei, A.; Zhang, Y. Chem.-Eur. J. 2014, 20, 13692.

    39. [39]

      Cai, Z.-J.; Lu, X.-M.; Zi, Y.; Yang, C.; Shen, L.-J.; Li, J.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2014, 16, 5108.  doi: 10.1021/ol502431b

    40. [40]

      Guru, M. M.; Punniyamurthy, T. J. Org. Chem. 2012, 77, 5063.  doi: 10.1021/jo300592t

    41. [41]

      Chen, Z.; Yan, Q.; Liu, Z.; Zhang, Y. Chem.-Eur. J. 2014, 20, 17535.

    42. [42]

      (a) Wan, J.-P.; Cao, S.; Liu, Y. J. Org. Chem. 2015, 80, 9028.
      (b) Thomas, J.; Goyvaerts, V.; Liekens, S.; Dehaen, W. Chem.-Eur. J. 2016, 22, 9966.

    43. [43]

      Li, Y.-J.; Li, X.; Zhang, S.-X.; Zhao, Y.-L.; Liu, Q. Chem. Commun. 2015, 51, 11564.  doi: 10.1039/C5CC02092A

    44. [44]

      Wang, S.; Yang, L.-J.; Zeng, J.-L.; Zheng, Y.; Ma, J.-A. Org. Chem. Front. 2015, 2, 1468.  doi: 10.1039/C5QO00219B

    45. [45]

      Kiselyov, A. S. Tetrahedron Lett. 2006, 47, 2631.  doi: 10.1016/j.tetlet.2006.02.030

    46. [46]

      Ahamad, S.; Kant, R.; Mohanan, K. Org. Lett. 2016, 18, 280.  doi: 10.1021/acs.orglett.5b03437

  • 加载中
    1. [1]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    2. [2]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    3. [3]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    4. [4]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    10. [10]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    11. [11]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    12. [12]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    13. [13]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    16. [16]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    17. [17]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    20. [20]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

Metrics
  • PDF Downloads(421)
  • Abstract views(8016)
  • HTML views(2919)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return