Citation: Yang Xiaohui, Gu Xuesong, Bin Huaiyu, Xie Jianhua, Zhou Qilin. Asymmetric Synthesis of (-)-Indolizidine167B and (+)-Coniine[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3963-3968. doi: 10.6023/cjoc202007052 shu

Asymmetric Synthesis of (-)-Indolizidine167B and (+)-Coniine

  • Corresponding author: Xie Jianhua, jhxie@nankai.edu.cn Zhou Qilin, qlzhou@nankai.edu.cn
  • Received Date: 22 July 2020
    Revised Date: 29 July 2020
    Available Online: 11 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21532003, 21871152, 21790332)the National Natural Science Foundation of China 21532003the National Natural Science Foundation of China 21871152the National Natural Science Foundation of China 21790332

Figures(5)

  • The enantioselective syntheses of (-)-indolizidine 167B and (+)-coniine were described based on the asymmetric hydrogenation of racemic δ-hydroxy esters via kinetic resolution. With optically active chiral δ-hydroxy ester (S)-4 and chiral 1, 5-diol (R)-5 obtained by asymmetric hydrogenation of racemic ethyl 5-hydroxyoctanoate (rac-4) with chiral spiro iridium catalyst Ir-(R)-SpiroPAP as chiral starting materials, the efficient enantioselective syntheses of (-)-indolizidine 167B and (+)-coniine were achieved by using intramolecular reductive amination and N-substitution/cyclization, respectively, as a key step to construct the chiral aza-bicyclic[4.3.0]nonane skeleton and chiral piperidine ring. This provides new efficient methods for enantioselective syntheses of indolizidine and piperidine alkaloids.
  • 加载中
    1. [1]

      (a) Daly, J. W.; Spande, T. F. In Alkaloids: Chemical and Biological Perspectives, Ed.: Pelletier, S. W., Wiley, New York, 1986, Vol. 4, p. 1.
      (b) Daly, J. W.; Nishizawa, Y.; Padgett, W. L.; Tokuyama, T. Smith, A. L.; Holmes, A. B.; Kibayashi, C.; Arostam, R. S. Neurochem. Res. 1991, 16, 1213.
      (c) Michael, J. P. Nat. Prod. Rep. 2007, 24, 191.
      (d) Michael, J. P. Nat. Prod. Rep. 2008, 25, 139.
      (e) Ratmanova, N. K.; Andreev, I. A.; Leontiev, A.; Momotova, D.; Novoselov, A. M.; Ivanova, O. A.; Trushkov, I. V. Tetrahedron 2020, 76, 131031.

    2. [2]

      (a) Daly, J. W. Fortschr. Chem. Org. Naturst. 1982, 41, 205.
      (b) Aronstam, R. S.; Daly, J. W.; Spande, T. F.; Narayanan, T. K.; Albuquerque, E. X. Neurochem. Res. 1986, 11, 1227.

    3. [3]

      For selected recent papers for enantioselective synthesis of indolizidine 167B and 209D, see: (a) Sun, Z.; Yu, S.; Ding, Z.; Ma, D. J. Am. Chem. Soc. 2007, 129, 9300.
      (b) Yu, R. T.; Lee, E. E.; Malik, G.; Rovis, T. Angew. Chem., Int. Ed. 2009, 48, 2379.
      (c) Kapat, A.; Nyfeler, E.; Giuffredi, G. T.; Renaud, P. J. Am. Chem. Soc. 2009, 131, 17746.
      (d) Liu, H.; Su, D.; Cheng, G.; Xu, J.; Wang, X.; Hu, Y. Org. Biomol. Chem. 2010, 8, 1899.
      (e) Abels, F.; Lindemann, C.; Schneider, C. Chem.-Eur. J. 2014, 20, 1964.
      (f) Li, Y.-J.; Hou, C.-C.; Chang, K.-C. Eur. J. Org. Chem. 2015, 1659.
      (g) Chiou, W.-H.; Chen, H.-Y. RSC Adv. 2017, 7, 684.
      (h) Koo, S. M.; Vendola, A. J.; Momm, S. N.; Morken, J. P. Org. Lett. 2020, 22, 666.

    4. [4]

      For selected recent papers for enantioselective synthesis of coniine, see: (a) Sattely, E. S.; Cortez, G. A.; Moebius, D. C.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 8526.
      (b) Beng, T. K.; Gawley, R. E. J. Am. Chem. Soc. 2010, 132, 12216.
      (c) Ren, H.; Wulff, W. D. J. Am. Chem. Soc. 2011, 133, 5656.
      (d) Arena, G.; Zill, N.; Salvadori, J.; Girard, N.; Mann, A.; Taddei, M. Org. Lett. 2011, 13, 2294.
      (e) Damodar, K.; Lingaiah, M.; Bhunia, N.; Das, B. Synthesis 2011, 2478.
      (f) Bosque, I.; Gonzá-Gómez, J. C.; Foubelo, F.; Yus, M. J. Org. Chem. 2012, 77, 780.
      (g) Ren, H.; Wulff, W. D. Org. Lett. 2013, 15, 242.
      (h) Berthold, D.; Geissler, A. G. A.; Giofré, S.; Breit, B. Angew. Chem. Int. Ed. 2019, 58, 9994.

    5. [5]

      Mody, N. V.; Henson, R.; Hedin, P. A.; Kokpol, U.; Miles, D. H. Experientia 1976, 32, 829.  doi: 10.1007/BF02003710

    6. [6]

    7. [7]

    8. [8]

      Back, T. G.; Nakajima, K. J. Org. Chem. 2000, 65, 4543.  doi: 10.1021/jo000080p

  • 加载中
    1. [1]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    2. [2]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    3. [3]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    8. [8]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    13. [13]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    14. [14]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    15. [15]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    16. [16]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    17. [17]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    18. [18]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    19. [19]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    20. [20]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

Metrics
  • PDF Downloads(20)
  • Abstract views(3250)
  • HTML views(472)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return