Citation: Niu Chuang, Wang Guanwu. Progress in Electrochemical Reactions of[60]Fullerene-Fused Heterocycles[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3633-3645. doi: 10.6023/cjoc202006081 shu

Progress in Electrochemical Reactions of[60]Fullerene-Fused Heterocycles

  • Corresponding author: Wang Guanwu, gwang@ustc.edu.cn
  • Received Date: 30 June 2020
    Revised Date: 13 August 2020
    Available Online: 18 August 2020

    Fund Project: National Natural Science Foundation of China 21572211Project supported by the National Natural Science Foundation of China (No. 21572211)

Figures(19)

  • Due to the potential applications of fullerene derivatives in materials science and biological science, chemists have been devoted to their synthesis over the past 30 years, and have reported a great diversity of synthetic protocols to fun-ctionalize fullerenes. Among the numerous methods, electrochemical synthesis has been considered to be a novel and efficient strategy due to its mild reaction conditions, good regioselectivity and relatively high yield. The electrochemical functionalizations of [60]fullerene-fused heterocycles have recently attracted wide interest, because electroreduction results in the carbon-heteroatom bond breaking and rearrangement of the heterocyclic moieties on the fullerene skeleton, consequently providing new addition patterns of fullerene derivatives. The electrochemical reactions of [60]fullerene-fused heterocycles since 2011 are reviewed.
  • 加载中
    1. [1]

      Osawa, E. Kagaku (Kyoto) 1970, 25, 854.
       

    2. [2]

      Kroto, H. W.; Heath, J. R.; O'brien, S. O.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.  doi: 10.1038/318162a0

    3. [3]

      Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.  doi: 10.1038/347354a0

    4. [4]

      Ceulemans, A.; Fowler, P. W. Nature 1991, 353, 52.  doi: 10.1038/353052a0

    5. [5]

      Liu, S.; Lu, Y. J.; Kappes, M. M.; Ibers, J. A. Science 1991, 254, 408.  doi: 10.1126/science.254.5030.408

    6. [6]

      For selected reviews, see:
      (a) Murata, M.; Murata, Y.; Komatsu, K. Chem. Commun. 2008, 6083.
      (b) Vougioukalakis, G. C.; Roubelakis, M. M.; Orfanopoulos, M. Chem. Soc. Rev. 2010, 39, 817.
      (c) Itami, K.; Chem. Rec. 2011, 11, 226.
      (d) Wang, G.-W.; Li, F.-B. Curr. Org. Chem. 2012, 16, 1109.
      (e) Maroto, E. E.; Izquierdo, M.; Reboredo, S.; Marco-Martínez, J.; Filippone, S.; Martín, N. Acc. Chem. Res. 2014, 47, 2660.
      (f) Gan, L. Chin. J. Chem. 2018, 36, 991.
      (g) Lin, H.-S.; Matsuo, Y. Chem. Commun. 2018, 54, 11244.

    7. [7]

    8. [8]

      (a) Haddon, R. C. Acc. Chem. Res. 1992, 25, 127.
      (b) Johnson, R. D.; Bethune, D. S.; Yannoni, C. S. Acc. Chem. Res. 1992, 25, 169.

    9. [9]

      Haddon, R. C.; Brus, L. E.; Raghavachari, K. Chem. Phys. Lett. 1986, 131, 165.  doi: 10.1016/0009-2614(86)80538-3

    10. [10]

      Echegoyen, L.; Echegoyen, L. E. Acc. Chem. Res. 1998, 31, 593.  doi: 10.1021/ar970138v

    11. [11]

      Nakamura, Y.; O-kawa, K.; Nishimura, J. Bull. Chem. Soc. Jpn. 2003, 76, 865.  doi: 10.1246/bcsj.76.865

    12. [12]

      Hirsch, A.; Brettreich, M. Fullerenes:Chemistry and Reactions, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.
       

    13. [13]

      (a) Jensen, A. W.; Khong, A.; Saunders, M.; Wilson, S. R.; Schuster, D. I. J. Am. Chem. Soc. 1997, 119, 7303.
      (b) Yamada, M.; Schweizer, W. B.; Schoenebeck, F.; Diederich, F. Chem. Commun. 2010, 46, 5334.
      (c) He, C.-L.; Liu, R.; Li, D.-D.; Zhu, S.-E.; Wang, G.-W. Org. Lett. 2013, 15, 1532.
      (d) Chen, M.; Bao, L.; Peng, P.; Zheng, S.; Xie, Y.; Lu, X. Angew. Chem., Int. Ed. 2016, 55, 11887.
      (e) Jiang, S.-P.; Zhang, M.; Wang, C.-Y.; Yang, S.; Wang, G.-W. Org. Lett. 2017, 19, 5110.

    14. [14]

      (a) Yang, W.-W.; Li, Z.-J.; Li, F.-F.; Gao, X. J. Org. Chem. 2011, 76, 1384.
      (b) Xiao Y.; Wang, G. Chin. J. Chem. 2014, 32, 699.
      (c) Majid, H.; Niu, C.; Wang, G.-W. Org. Chem. Front. 2020, 7, 1249.

    15. [15]

      (a) Schick, G.; Kampe, K.-D.; Hirsch, A. J. Chem. Soc., Chem. Commun. 1995, 2023.
      (b) Murata, Y.; Shiro, M.; Komatsu, K. J. Am. Chem. Soc. 1997, 119, 8117.
      (c) Deng, L.-L.; Xie, S.-L.; Yuan, C.; Liu, R.-F.; Feng, J.; Sun, L.-C.; Lu, X.; Xie, S.-Y.; Huang, R.-B.; Zheng, L.-S. Sol. Energy Mater. Sol. Cells 2013, 111, 193.
      (d) Clikeman, T. T.; Deng, S. H. M.; Avdoshenko, S.; Wang, X.-B.; Popov, A. A.; Strauss, S. H.; Boltalina, O. V. Chem.-Eur. J. 2013, 19, 15404.

    16. [16]

      (a) Kadish, K. M.; Gao, X.; Caemelbecke, E. V.; Suenobu, T.; Fukuzumi, S. J. Am. Chem. Soc. 2000, 122, 563.
      (b) Matsuo, Y.; Iwashita, A.; Abe, Y.; Li, C.-Z.; Matsuo, K.; Hashiguchi, M.; Nakamura, E. J. Am. Chem. Soc. 2008, 130, 15429.
      (c) Nambo, M.; Wakamiya, A.; Yamaguchi, S.; Itami, K. J. Am. Chem. Soc. 2009, 131, 15112.
      (d) Kuvychko, I. V.; Streletskii, A. V.; Shustova, N. B.; Seppelt, K.; Drewello, T.; Popov, A. A.; Strauss, S. H.; Boltalina, O. V. J. Am. Chem. Soc. 2010, 132, 6443.
      (e) Chang, W.-W.; Li, Z.-J.; Yang, W.-W.; Gao, X. Org. Lett. 2012, 14, 2386.

    17. [17]

      Rubin, Y.; Ganapathi, P. S.; Franz, A.; An, Y.-Z.; Qian, W.; Neier, R. Chem.-Eur. J. 1999, 5, 3162.  doi: 10.1002/(SICI)1521-3765(19991105)5:11<3162::AID-CHEM3162>3.0.CO;2-H

    18. [18]

      (a) Xiao, Y.; Zhu, S.-E.; Liu, D.-J.; Suzuki, M.; Lu, X.; Wang, G.-W. Angew. Chem., Int. Ed. 2014, 53, 3006.
      (b) Hou, H.-L.; Li, Z.-J.; Gao, X. Org. Lett. 2014, 16, 712.
      (c) Li, Z.-J.; Li, S.-H.; Sun, T.; Hou, H.-L.; Gao, X. J. Org. Chem. 2015, 80, 3566.
      (d) Lin, H.-S.; Matsuo, Y.; Wang, J.-J.; Wang, G.-W. Org. Chem. Front. 2017, 4, 603.
      (e) Li, F.; Wang, J.-J.; Wang, G.-W. Chem. Commun. 2017, 53, 1852.

    19. [19]

      (a) Liu, K.-Q.; Wang, J.-J.; Yan, X.-X.; Niu, C.; Wang, G.-W. Chem. Sci. 2020, 11, 384.
      (b) Yan, X.-X.; Li, B.; Lin, H.-S.; Jin, F.; Niu, C.; Liu, K.-Q.; Wang, G.-W.; Yang, S. Research 2020, 2020, 2059190.

    20. [20]

      (a) Hsu, H.-F.; Shapley, J. R. J. Am. Chem. Soc. 1996, 118, 9192.
      (b) Tajima, Y.; Takeuchi, K. J. Org. Chem. 2002, 67, 1696.
      (c) Chuang, S.-C.; Clemente, F. R.; Khan, S. I.; Houk, K. N.; Rubin, Y. Org. Lett. 2006, 8, 4525.

    21. [21]

      (a) Birkett, P. R.; Hitchcock, P. B.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. Nature 1992, 357, 479.
      (b) Gan, L.; Huang, S.; Zhang, X.; Zhang, A.; Cheng, B.; Cheng, H.; Li, X.; Shang, G. J. Am. Chem. Soc. 2002, 124, 13384.

    22. [22]

      Hou, H.-L.; Li, Z.-J.; Wang, Y.; Gao, X. J. Org. Chem. 2014, 79, 8865.  doi: 10.1021/jo5019238

    23. [23]

      Majid, H.; Chen, M.; Yang, S.; Wang, G.-W. Org. Lett. 2019, 21, 8568.  doi: 10.1021/acs.orglett.9b03112

    24. [24]

      Chen, S.; Li, Z.-J.; Li, S.-H.; Gao, X. Org. Lett. 2015, 17, 5192.  doi: 10.1021/acs.orglett.5b02528

    25. [25]

      Yang, Y.; Niu, C.; Chen, M.; Yang, S.; Wang, G.-W. Org. Biomol. Chem. 2020, 18, 4783.  doi: 10.1039/D0OB00876A

    26. [26]

      Liu, R.; Li, F.; Xiao, Y.; Li, D.-D.; He, C.-L.; Yang, W.-W.; Gao, X.; Wang, G.-W. J. Org. Chem. 2013, 78, 7093.  doi: 10.1021/jo400920f

    27. [27]

      Wang, J.-J.; Lin, H.-S.; Niu, C.; Wang, G.-W. Org. Biomol. Chem. 2017, 15, 3248.  doi: 10.1039/C7OB00463J

    28. [28]

      Niu, C.; Zhou, D.-B.; Yang, Y.; Yin, Z.-C.; Wang, G.-W. Chem. Sci. 2019, 10, 3012.  doi: 10.1039/C8SC05089A

    29. [29]

      Niu, C.; Li, B.; Yin, Z.-C.; Yang S.; Wang, G.-W. Org. Lett. 2019, 21, 7346.  doi: 10.1021/acs.orglett.9b02635

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    3. [3]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    4. [4]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    5. [5]

      Xianyong Lu Tao Hu . Developing an Innovative Inorganic Chemistry Teaching Model Based on Aerospace Specialty Characteristics. University Chemistry, 2025, 40(7): 127-131. doi: 10.12461/PKU.DXHX202409037

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    10. [10]

      Siwen Yuan Qilin Wu TianpengYin . NMR Spectroscopy Teaching Design Using the Mosher Method for Stereochemistry of Organic Compounds Based on BOPPPS Teaching Model. University Chemistry, 2025, 40(7): 161-168. doi: 10.12461/PKU.DXHX202502073

    11. [11]

      Fangdong Hu Xiaolei Jiang . Research and Practice of the “Integration of Theory and Practice Drives Innovation” Teaching Mode in Inorganic Chemistry under the Background of “Four New” Construction. University Chemistry, 2024, 39(11): 1-8. doi: 10.3866/PKU.DXHX202402013

    12. [12]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    15. [15]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    19. [19]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    20. [20]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

Metrics
  • PDF Downloads(42)
  • Abstract views(4067)
  • HTML views(769)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return