Citation: Du Jianbo, Chen Yuegang, Zuo Zhiwei. Recent Progress of Photocatalytic Methylation of Arenes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3646-3655. doi: 10.6023/cjoc202006079 shu

Recent Progress of Photocatalytic Methylation of Arenes

  • Corresponding author: Zuo Zhiwei, zuozhw@sioc.ac.cn
  • Received Date: 30 June 2020
    Revised Date: 7 August 2020
    Available Online: 17 August 2020

    Fund Project: National Natural Science Foundation of China 21971163National Natural Science Foundation of China 21772121Project supported by the National Natural Science Foundation of China (Nos. 21772121, 21971163)

Figures(20)

  • Methylation of arenes is one of the versatile approaches to achieve structural modification in organic and medicinal chemistry. Installation of a methyl group onto an aromatic ring can lead to significant improvenent of the physical properties and biological activity of this molecule, thusly the effect oftentimes is called the"magic methyl effect". During the past few years, visible-light-induced photocatalysis has emerged as a powerful tool for the development of efficient transformations in organic synthesis. Compared to traditional radical mediated reactions, the use of visible light as energy input is more environmentally benign. Recently, a series of aryl methylation reactions enabled by visible light photoredox catalysis have been reported and applied in the synthesis of pharmaceutically-interested products. In this review, the recent progress of visible-light-induced aryl methylation reactions is briefly summaried, with discussions of different reaction pathways.
  • 加载中
    1. [1]

      (a) Friesen, R. W.; Brideau, C.; Chan, C. C.; Charleson, S.; Deschanes, D.; Dub, D.; Ethier, D.; Fortin, R.; Gauthier, J. Y.; Girard, Y.; Gordon, R.; Greig, G. M.; Riendeau, D.; Savoie, C.; Wang, Z.; Wong, E.; Visco, D.; Xu, L.-J.; Young, R. N. Bioorg. Med. Chem. Lett. 1998, 8, 2777.
      (b) Li, L.; Beaulieu, C.; Carriere, M. C.; Denis, D.; Greig, G.; Guay, D.; ONeill, G.; Zamboni, R.; Wang. Z. Bioorg. Med. Chem. Lett. 2010, 20, 7462.
      (c) Ginnings, P. M.; Baum. R. J. Am. Chem. Soc. 1937, 59, 1111.

    2. [2]

      Schönherr, H.; Cernak, T. Angew. Chem., Int. Ed. 2013, 52, 12256.  doi: 10.1002/anie.201303207

    3. [3]

      (a) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348.
      (b) Barreiro, E. J.; Kmmerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111, 5215.

    4. [4]

      (a) Potthast, A.; Rosenau, T.; Chen, C.-L.; Gratzl, J. S. J. Org. Chem. 1995, 60, 4320.
      (b) Friedman, L.; Fishel, D. L.; Shechter, H. J. Org. Chem. 1965, 30, 1453.
      (c) Friedman, L. Org. Synth. 1963, 43, 80.
      (d) Das, S.; Bhowmick, T.; Punnyamurthy, T.; Dey, D.; Nath, J.; Chaudhuri, M. K. Tetrahedron Lett. 2003, 44, 4915.
      (e) Shimada, K.; Nanae, T.; Aoyagi, S.; Takikawa, Y.; Kabuto, C. Tetrahedron Lett. 2001, 42, 6167.

    5. [5]

      (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
      (b) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
      (c) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
      (d) Yan, G.-B.; Borah, A. J.; Wang, L.-G.; Yang, M.-H. Adv. Synth. Catal. 2015, 357, 1333.
      (e) Chen, Y.-T. Chem.-Eur. J. 2019, 25, 3405.
      (f) Hu, L.; Liu, Y.-A.; Liao, X. Synlett 2018, 29, 375.
      (g) Feng, K.; Quevedo, R. E.; Kohrt, J. T.; Oderinde, M. S.; Reilly, U.; White, M. C. Nature 2020, 580, 621.
      (h) Feng, B.; Yang, Y.; You, J. Chem. Sci. 2020, 11, 6031.
      (i) Chen, X.-Y.; Sorensen, E. J. J. Am. Chem. Soc. 2018, 140, 2789.
      (j) He, Z.-T.; Li, H.; Haydl, A.; Whiteker, G.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 17197.
      (k) Serpier, F.; Pan, F.; Ham, W. S.; Jacq, J.; Genicot, C.; Ritter, T. Angew. Chem., Int. Ed. 2018, 57, 10697.
      (l) Lv, W.; Wen, S.; Liu, J.; Cheng, G. J. Org. Chem. 2019, 84, 9786.

    6. [6]

      (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
      (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
      (d) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
      (e) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (f) Chen, Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci. China: Chem. 2019, 62, 24.

    7. [7]

      (a) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
      (b) Netherton, M. R.; Fu, G. C. Adv. Synth. Catal. 2004, 346, 1525.
      (c) Rudolph, A.; Lautens, M. Angew. Chem., Int. Ed. 2009, 48, 2656.

    8. [8]

      ana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417.  doi: 10.1021/cr100327p

    9. [9]

      Zhang, P.; Le, C. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 8084.  doi: 10.1021/jacs.6b04818

    10. [10]

      Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.  doi: 10.1021/ja407589e

    11. [11]

      Kariofillis, S. K.; Shields, B. J.; Tekle-Smith, M. A.; Zacuto, M. J.; Doyle, A. G. J. Am. Chem. Soc. 2013, 135, 16192.  doi: 10.1021/ja407589e

    12. [12]

      Sato, Y.; Nakamura, K.; Sumida, Y.; Hashizume, D.; Hosoya, T.; Ohmiya, H. J. Am. Chem. Soc. 2020, 142, 9938.  doi: 10.1021/jacs.0c04456

    13. [13]

      Schuster, G. B. Pure Appl. Chem. 1990, 62, 156.

    14. [14]

      (a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575.
      (b) Proctor, R. S.; Phipps, R. J. Angew. Chem., Int. Ed. 2019, 58, 13666.

    15. [15]

      DiRocco, D. A.; Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.; Tudge, M. Angew. Chem., Int. Ed. 2014, 53, 4802.  doi: 10.1002/anie.201402023

    16. [16]

      Komai, T.; Matsuyama, K.; Matsushima, M. Bull. Chem. Soc. Jpn. 1988, 61, 1641.  doi: 10.1246/bcsj.61.1641

    17. [17]

      MorletSavary, F.; Wieder, F.; Fouassier, J. P. J. Chem. Soc. Faraday Trans. 1997, 93, 3931.  doi: 10.1039/a704951j

    18. [18]

      Tarantino, K. T.; Liu, P.; Knowles, R. R. J. Am. Chem. Soc. 2013, 135, 10022.  doi: 10.1021/ja404342j

    19. [19]

      Jin, J.; MacMillan, D. W. C. Nature 2015, 525, 87.  doi: 10.1038/nature14885

    20. [20]

      Wessig, P.; Muehling, O. Eur. J. Org. Chem. 2007, 2219.
       

    21. [21]

      Li, G.-X.; Christian A.; Rivera, M.; Wang, Y.-X.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.  doi: 10.1039/C6SC02653B

    22. [22]

      (a) Huang, H.; Jia, K.; Chen, Y. Angew. Chem., Int. Ed. 2015, 54, 1881.
      (b) Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280.
      (c) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433.
      (d) Khatib, M. E.; Seraphim, R. A. M.; Molander, G. A. Angew. Chem., Int. Ed. 2016, 55, 254.

    23. [23]

      Zhang, W.-M.; Dai, J.-J.; Xu, J.; Xu, H.-J. J. Org. Chem. 2017, 82, 2059.  doi: 10.1021/acs.joc.6b02891

    24. [24]

      Liu, W.-B.; Yang, X.-B.; Zhou, Z.-Z.; Li, C.-J. Chemistry 2017, 2, 688.  doi: 10.1016/j.chempr.2017.03.009

    25. [25]

      Sherwood, T. C.; Li, N.; Yazdani, A. N.; Dhar, T. G. M. J. Org. Chem. 2018, 83, 3000.  doi: 10.1021/acs.joc.8b00205

    26. [26]

      Garza-Sanchez, R. A.; Patra, T.; Tlahuext-Aca, A.; Strieth-Kalthoff, F.; Glorius, F. Chem.-Eur. J. 2018, 24, 10064.  doi: 10.1002/chem.201802352

    27. [27]

      Hu, A.-H.; Guo, J.-J.; Pan, H.; Zuo, Z.-W. Science 2018, 361, 668.  doi: 10.1126/science.aat9750

    28. [28]

      Zidan, M.; Morris, A. O.; McCallum, T.; Barriault, L. Eur. J. Org. Chem. 2020, 1453.

    29. [29]

      Li, Z.-L.; Wang, X.-F.; Xia, S.-Q.; Jin, J. Org. Lett. 2019, 21, 4259.  doi: 10.1021/acs.orglett.9b01439

    30. [30]

      Le, C.; Liang, Y.-F.; Evans, R. W.; Li, X.-M.; MacMillan, D. W. C. Nature 2017, 547, 79.  doi: 10.1038/nature22813

  • 加载中
    1. [1]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    2. [2]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    3. [3]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    4. [4]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    5. [5]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    6. [6]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    7. [7]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    8. [8]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    9. [9]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    10. [10]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    11. [11]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    14. [14]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    15. [15]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    16. [16]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(79)
  • Abstract views(5044)
  • HTML views(1012)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return