Citation: Tang Yuping, He Yanmei, Fan Qinghua. Artificial Stimuli-Responsive Catalytic Systems for Switchable Asymmetric Catalysis[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3672-3685. doi: 10.6023/cjoc202006076 shu

Artificial Stimuli-Responsive Catalytic Systems for Switchable Asymmetric Catalysis

  • Corresponding author: He Yanmei, heym@iccas.ac.cn Fan Qinghua, fanqh@iccas.ac.cn
  • Received Date: 30 June 2020
    Revised Date: 3 August 2020
    Available Online: 11 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21772204, 21521002), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDJ-SSW-SLH023)the National Natural Science Foundation of China 21772204the Key Research Program of Frontier Sciences, Chinese Academy of Sciences QYZDJ-SSW-SLH023the National Natural Science Foundation of China 21521002

Figures(17)

  • Inspired by enzyme allosteric catalysis, the study on artificial stimuli-responsive asymmetric catalytic systems has attracted more and more attentions in recent years. In order to precisely control the catalytic activity and stereoselectivity, stimuli-responsive functionalities have been introduced into the catalyst design. A variety of asymmetric reactions featuring on/off-switchable catalysis and/or stereodivergent catalysis have been successfully achieved by using light-, coordination-, pH-and redox-driven chiral switchable catalysts. By selecting representative examples, the catalyst design principles, allosteric mechanism and their applications in switchable asymmetric reactions sre mainly introduced. At the same time, advantages and limitations of this emerging field are summarized, and perspectives for its future development are given.
  • 加载中
    1. [1]

      (a) Traut, T. Enzyme Activity: Allosteric Regulation, John Wiley & Sons Ltd, Chichester, 2014.
      (b) Traut, T. Allosteric Regulatory Enzymes, Springer, New York, 2008.

    2. [2]

      van Leeuwen, P. W. N. M. Homogeneous Catalysis: Understanding the Art, Springer, Dordrecht, 2004.

    3. [3]

      van Leeuwen, P. W. N. M. Supramolecular Catalysis, Wiley-VCH, Weinheim, 2008.

    4. [4]

    5. [5]

      (a) Lüning, U. Angew. Chem., Int. Ed. 2012, 51, 8163.
      (b) Blanco, V.; Leigh, D. A.; Marcos, V. Chem. Soc. Rev. 2015, 44, 5341.
      (c) Vlatković, M.; Collins, B. S. L.; Feringa, B. L. Chem.-Eur. J. 2016, 22, 17080.
      (d) van Dijk, L.; Tilby, M. J.; Szpera, R.; Smith, O. A.; Bunce, H. A. P.; Fletcher, S. P. Nat. Rev. Chem. 2018, 2, 0117.

    6. [6]

      (a) Cao, W.; Feng, X.; Liu, X. Org. Biomol. Chem. 2019, 17, 6538.
      (b) Ding, Z.-Y.; Chen, F.; Qin, J.; He, Y.-M.; Fan, Q.-H. Angew. Chem., Int. Ed. 2012, 51, 5706.

    7. [7]

      Kasprzyk-Hordern, B. Chem. Soc. Rev. 2010, 39, 4466.  doi: 10.1039/c000408c

    8. [8]

      Romanazzi, G.; Degennaro, L.; Mastrorilli, P.; Luisi, R. ACS Catal. 2017, 7, 4100.  doi: 10.1021/acscatal.7b00827

    9. [9]

      (a) Yamamoto, T.; Yamada, T.; Nagata, Y.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 7899.
      (b) Akai, Y.; Yamamoto, T.; Nagata, Y.; Ohmura, T.; Suginome, M. J. Am. Chem. Soc. 2012, 134, 11092.
      (c) Nagata, Y.; Nishikawa, T.; Suginome, M. J. Am. Chem. Soc. 2014, 136, 15901.
      (d) Akai, Y.; Konnert, L.; Yamamoto, T.; Suginome, M. Chem. Commun. 2015, 51, 7211.
      (e) Ke, Y.-Z.; Nagata, Y.; Yamada, T.; Suginome, M. Angew. Chem., Int. Ed. 2015, 54, 9333.

    10. [10]

      Stoll, R. S.; Hecht, S. Angew. Chem., Int. Ed. 2010, 49, 5054.  doi: 10.1002/anie.201000146

    11. [11]

      Irie, M. Chem. Rev. 2000, 100, 1685.  doi: 10.1021/cr980069d

    12. [12]

      Sud, D.; Norsten, T. B.; Branda, N. R. Angew. Chem., Int. Ed. 2005, 44, 2019.  doi: 10.1002/anie.200462538

    13. [13]

      (a) Koumura, N.; Zijlstra, R. W. J.; van Delden, R. A.; Harada, N.; Feringa, B. L. Nature 1999, 401, 152.
      (b) Eelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C. W. M.; Broer, D. J.; Feringa, B. L. Nature 2006, 440, 163.

    14. [14]

      Dorel, R.; Feringa, B. L. Chem. Commun. 2019, 55, 6477.  doi: 10.1039/C9CC01891C

    15. [15]

      Wang, J.; Feringa, B. L. Science 2011, 331, 1429.  doi: 10.1126/science.1199844

    16. [16]

      Vlatković, M.; Bernardi, L.; Otten, E.; Feringa, B. L. Chem. Commun. 2014, 50, 7773.  doi: 10.1039/c4cc00794h

    17. [17]

      Trost, B. M.; Van Vranken, D. L.; Bingel, C. J. Am. Chem. Soc. 1992, 114, 9327.  doi: 10.1021/ja00050a013

    18. [18]

      Zhao, D.; Neubauer, T. M.; Feringa, B. L. Nat. Commun. 2015, 6, 6652.  doi: 10.1038/ncomms7652

    19. [19]

      (a) Juwarker, H.; Lenhardt, J. M.; Pham, D. M.; Craig, S. L. Angew. Chem., Int. Ed. 2008, 47, 3740.
      (b) Juwarker, H.; Jeong, K.-S. Chem. Soc. Rev. 2010, 39, 3664.

    20. [20]

      Dorel, R.; Feringa, B. L. Angew. Chem., Int. Ed. 2020, 59, 785.  doi: 10.1002/anie.201913054

    21. [21]

      (a) Koumura, N.; Geertsema, E. M.; van Gelder, M. B.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2002, 124, 5037.
      (b) Vicario, J.; Walko, M.; Meetsma, A.; Feringa, B. L. J. Am. Chem. Soc. 2006, 128, 5127.
      (c) Klok, M.; Walko, M.; Geertsema, E. M.; Ruangsupapichat, N.; Kistemaker, J. C. M.; Meetsma, A.; Feringa, B. L. Chem.-Eur. J. 2008, 14, 11183.

    22. [22]

      Pizzolato, S. F.; Collins, B. S. L.; van Leeuwen, T.; Feringa, B. L. Chem.-Eur. J. 2017, 23, 6174.  doi: 10.1002/chem.201604966

    23. [23]

      Pizzolato, S. F.; Štacko, P.; Kistemaker, J. C. M.; van Leeuwen, T.; Otten, E.; Feringa, B. L. J. Am. Chem. Soc. 2018, 140, 17278.  doi: 10.1021/jacs.8b10816

    24. [24]

      Pizzolato, S. F.; Štacko, P.; Kistemaker, J. C. M.; van Leeuwen, T.; Feringa, B. L. Nat. Catal. 2020, 3, 488.  doi: 10.1038/s41929-020-0452-y

    25. [25]

      (a) Chen, C.-T.; Chou, Y.-C. J. Am. Chem. Soc. 2000, 122, 7662.
      (b) Chen, W.-C.; Lee, Y.-W.; Chen, C.-T. Org. Lett. 2010, 12, 1472.
      (c) Chen, C.-T.; Chen, C.-H.; Ong, T.-G. J. Am. Chem. Soc. 2013, 135, 5294.

    26. [26]

      Chen, C.-T.; Tsai, C.-C.; Tsou, P.-K.; Huang, G.-T.; Yu, C.-H. Chem. Sci. 2017, 8, 524.  doi: 10.1039/C6SC02646J

    27. [27]

      (a) Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022.
      (b) Caulder, D. L.; Raymond, K. N. Acc. Chem. Res. 1999, 32, 975.

    28. [28]

      Oliveri, C. G.; Ulmann, P. A.; Wiester, M. J.; Mirkin, C. A. Acc. Chem. Res. 2008, 41, 1618.  doi: 10.1021/ar800025w

    29. [29]

      Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Angew. Chem., Int. Ed. 2011, 50, 114.  doi: 10.1002/anie.201000380

    30. [30]

      Gianneschi, N. C.; Masar Ⅲ, M. S.; Mirkin, C. A. Acc. Chem. Res. 2005, 38, 825.  doi: 10.1021/ar980101q

    31. [31]

      Yoon, H. J.; Kuwabara, J.; Kim, J.-H.; Mirkin, C. A. Science 2010, 330, 66.  doi: 10.1126/science.1193928

    32. [32]

      Gianneschi, N. C.; Bertin, P. A.; Nguyen, S. T.; Mirkin, C. A.; Zakharov, L. N.; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125, 10508.  doi: 10.1021/ja035621h

    33. [33]

      Hansen, K. B.; Leighton, J. L.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 10924.  doi: 10.1021/ja962600x

    34. [34]

      Gianneschi, N. C.; Cho, S.-H.; Nguyen, S. T.; Mirkin, C. A. Angew. Chem., Int. Ed. 2004, 43, 5503.  doi: 10.1002/anie.200460932

    35. [35]

      Ouyang, G.-H.; He, Y.-M.; Li, Y.; Xiang, J.-F.; Fan, Q.-H. Angew. Chem., Int. Ed. 2015, 54, 4334.  doi: 10.1002/anie.201411593

    36. [36]

      (a) Coskun, A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.; Grzybowski, B. A. Chem. Soc. Rev. 2012, 41, 19.
      (b) Zhang, L.; Marcos, V.; Leigh, D. A. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 9397.

    37. [37]

      Leigh, D. A.; Marcos, V.; Wilson, M. R. ACS Catal. 2014, 4, 4490.  doi: 10.1021/cs5013415

    38. [38]

      Blanco, V.; Carlone, A.; Hänni, K. D.; Leigh, D. A.; Lewandowski, B. Angew. Chem., Int. Ed. 2012, 51, 5166.  doi: 10.1002/anie.201201364

    39. [39]

      Blanco, V.; Leigh, D. A.; Marcos, V.; Morales-Serna, J. A.; Nussbaumer, A. L. J. Am. Chem. Soc. 2014, 136, 4905.  doi: 10.1021/ja501561c

    40. [40]

      (a) Alvarez-Pérez, M.; Goldup, S. M.; Leigh, D. A.; Slawin, A. M. Z. J. Am. Chem. Soc. 2008, 130, 1836.
      (b) Cakmak, Y.; Erbas-Cakmak, S.; Leigh, D. A. J. Am. Chem. Soc. 2016, 138, 1749.

    41. [41]

      Dommaschk, M.; Echavarren, J.; Leigh, D. A.; Marcos, V.; Singleton, T. A. Angew. Chem., Int. Ed. 2019, 58, 14955.  doi: 10.1002/anie.201908330

    42. [42]

      De Bo, G.; Leigh, D. A.; McTernan, C. T.; Wang, S. Chem. Sci. 2017, 8, 7077.  doi: 10.1039/C7SC02462B

    43. [43]

      (a) Chaur, M. N.; Collado, D.; Lehn, J.-M. Chem.-Eur. J. 2011, 17, 248.
      (b) Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963.

    44. [44]

      (a) Allgeier, A. M.; Mirkin, C. A. Angew. Chem., Int. Ed. 1998, 37, 894.
      (b) Praneeth, V. K. K.; Ringenberg, M. R.; Ward, T. R. Angew. Chem., Int. Ed. 2012, 51, 10228.

    45. [45]

      Zahn, S.; Canary, J. W. Science 2000, 288, 1404.  doi: 10.1126/science.288.5470.1404

    46. [46]

      Mortezaei, S.; Catarineu, N. R.; Canary, J. W. J. Am. Chem. Soc. 2012, 134, 8054.  doi: 10.1021/ja302283s

    47. [47]

      Mortezaei, S.; Catarineu, N. R.; Duan, X.; Hu, C.; Canary, J. W. Chem. Sci. 2015, 6, 5904.  doi: 10.1039/C5SC02144H

    48. [48]

      Zhang, Q.; Cui, X.; Zhang, L.; Luo, S.; Wang, H.; Wu, Y. Angew. Chem., Int. Ed. 2015, 54, 5210.  doi: 10.1002/anie.201500070

    49. [49]

      (a) Kassem, S.; Lee, A. T. L.; Leigh, D. A.; Marcos, V.; Palmer, L. I.; Pisano, S. Nature 2017, 549, 374.
      (b) Kelly, T. R.; Snapper, M. L. Nature 2017, 549, 336.

    50. [50]

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    4. [4]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    10. [10]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    11. [11]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    12. [12]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    13. [13]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(19)
  • Abstract views(4015)
  • HTML views(606)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return