Citation: Li Jianyu, Zeng Jinlong, Chen Jianfeng, Zhao Baoguo. Tris(trimethylsilyl)silane/O2-Promoted and Photo-accelerated Conversion of Alkyl Iodides to Alcohols[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3853-3857. doi: 10.6023/cjoc202006055 shu

Tris(trimethylsilyl)silane/O2-Promoted and Photo-accelerated Conversion of Alkyl Iodides to Alcohols

  • Corresponding author: Chen Jianfeng, jfchen@shnu.edu.cn Zhao Baoguo, zhaobg2006@shnu.edu.cn
  • Received Date: 26 June 2020
    Revised Date: 5 August 2020
    Available Online: 18 August 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21672148), the Shanghai Municipal Education Commission (No. 2019-01-07-00-02-E00029) and the Shanghai Engineering Research Center of Green Energy Chemical Engineeringthe National Natural Science Foundation of China 21672148the Shanghai Municipal Education Commission 2019-01-07-00-02-E00029

Figures(2)

  • A mild method for the conversion of alkyl iodides to alcohols was developed. The transformation was promoted by tris(trimethylsilyl)silane/O2 and accelerated by photoredox catalysis under visible light irradiation conditions. Various alkyl iodides, including primary, secondary and tertiary iodides, can be smoothly converted to the corresponding alcohols in 38%~99% yields.
  • 加载中
    1. [1]

      (a) Larock, R. C. Comprehensive Organic Transformations, 2nd ed., Wiley-VCH, New York, 1999, p. 890.
      (b) Smith, M. D.; March, J. Advanced Organic Chemistry, 6th ed., Wiley-Interscience, New York, 2007, p. 425.

    2. [2]

      (a) Harris, M.; Bull, M. J. Synth. Commun. 1985, 15, 1225.
      (b) Alexander, J.; Renyer, M. L.; Veerapanane, H. Synth. Commun. 1995, 25, 3875.
      (c) Ruddick, C. L.; Hodge, P.; Houghton, M. P. Synthesis 1996, 1359.
      (d) Abad, A.; Agulló, C.; Cuñat, A.C.; Navarro, I. Synthesis 2005, 3355.
      (e) Chougala, B. M.; Samundeeswari, S.; Holiyachi, M.; Shastri, L. A. ChemistrySelect 2017, 2, 1290.
      (f) Liu, H.; Liu, J.; Cheng, X.; Jia, X.; Yu, L.; Xu, Q. ChemSusChem 2019, 12, 2994.

    3. [3]

      (a) Nakamura, E.; Inubushi, T.; Aoki, S.; Machii, D. J. Am. Chem. Soc. 1991, 113, 8980.
      (b) Nakamura, E.; Sato, K.; Imanishi, Y. Synlett 1995, 525.
      (c) Sawamura, M.; Kawaguchi, Y.; Nakamura, E. Synlett 1997, 801.
      (d) Sawamura, M.; Kawaguchi, Y.; Sato, K.; Nakamura, E. Chem. Lett. 1997, 26, 705.

    4. [4]

      Cai, Y.-M.; Xu, Y.-T.; Zhang, X.; Gao, W.-X.; Huang, X.-B.; Zhou, Y.-B.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2019, 21, 8479.  doi: 10.1021/acs.orglett.9b03317

    5. [5]

      (a) Itoh, A.; Kodama, T.; Inagaki, S.; Masaki, Y. Org. Lett. 2001, 3, 2653.
      (b) Li, J.; Wang, H.; Liu, L.; Sun, J. RSC Adv. 2014, 4, 49974.
      (c) Xu, J.; Liu, N.; Zou, L.; Cheng, F.; Shen, X.; Liu, T.; Lv, H.; Khan, R.; Fan, B. Asian J. Org. Chem. 2019, 8, 261.

    6. [6]

      (a) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (b) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (c) Dai X.; Xu, X.; Li, X. Chin. J. Org. Chem. 2013, 33, 2046(in Chinese).
      (戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046.)
      (d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
      (e) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
      (f) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. ACS Catal. 2017, 7, 2563.

    7. [7]

      (a) Chatgilialoglu, C. Acc. Chem. Res. 1992, 25, 188.
      (b) Chatgilialoglu, C.; Ferreri, C.; Landais, Y.; Timokhin, V. I. Chem. Rev. 2018, 118, 6516.

    8. [8]

      Mills, I. N.; Porras, J. A.; Bernhard, S. Acc. Chem. Res. 2018, 51, 352.  doi: 10.1021/acs.accounts.7b00375

    9. [9]

      (a) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R. A. Jr.; Malliaras, G. G.; Bernhard, S. Chem. Mater. 2005, 17, 5712.
      (b) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.
      (c) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.

    10. [10]

      (a) Stien, D.; Gastaldi, S. J. Org. Chem. 2004, 69, 4464.
      (b) Damont, A.; Médran-Navarrete, V.; Cacheux, F.; Kuhnast, B.; Pottier, G.; Bernards, N.; Marguet, F.; Puech, F.; Boisgard, R.; Dolle, F. J. Med. Chem. 2015, 58, 7449.
      (c) Dudnik, A. S.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 10693.

    11. [11]

      (a) Lee, K. C.; Lee, S.-Y.; Choe, Y. S.; Chi, D. Y. Bull. Korean Chem. Soc. 2004, 25, 1225.
      (b) Nicholson, J. S.; Richards, H. C.; Adams, S. S. GB 1030756, 1966.
      (c) Osako, T.; Torii, K.; Hirata, S.; Uozumi, Y. ACS Catal. 2017, 7371.
      (d) Itami, K.; Kamei, T.; Mitsudo, K.; Nokami, T.; Yoshida, J. J. Org. Chem. 2001, 66, 397.
      (e) Khan, S. N.; Zaman, M. K.; Li, R.; Sun, Z. J. Org. Chem. 2020, 85, 5019.
      (f) Sakai, N.; Kawana, K.; Ikeda, R.; Nakaike, Y.; Konakahara, T. Eur. J. Org. Chem. 2011, 2011, 3178.
      (g) Reddy, A. G. K.; Krishna, J.; Satyanarayana, G. ChemistrySelect 2016, 1, 1151.
      (h) Cavedon, C.; Madani, A.; Seeberger, P. H.; Pieber, B. Org. Lett. 2019, 21, 5331.
      (i) Ishibashi, M. J. Polym. Sci. B Polym. Lett. 1964, 2, 789.
      (j) Reddy, M. V.; Kang, S. M.; Yoo, S.; Woo, S. S.; Kim, D. W. RSC. Adv. 2019, 9, 9435.
      (k) Rysak, V.; Descamps-Mandine, A.; Simon, P.; Blanchard, F.; Burylo, L.; Trentesaux, M.; Vandewalle, M.; Collière, V.; Agbossou-Niedercorn, F.; Michon, C. Catal. Sci. Technol. 2018, 8, 3504.
      (l) Green, R. A.; Jolley, K. E.; Al-Hadedi, A. A. M.; Pletcher, D.; Harrowven, D. C.; De Frutos, O.; Mateos, C.; Klauber, D. J.; Rincón, J. A.; Brown, R. C. D. Org. Lett. 2017, 19, 2050.
      (m) Xu, G.; Leloux, S.; Zhang, P.; Meijide Suárez, J.; Zhang, Y.; Derat, E.; Ménand, M.; Bistri-Aslanoff, O.; Roland, S.; Leyssens, T.; Riant, O.; Sollogoub, M. Angew. Chem., Int. Ed. 2020, 59, 7591.
      (n) Ouali, A.; Majoral, J.-P.; Caminade, A.-M.; Taillefer, M. ChemCatChem 2009, 1, 504.
      (o) Rösler, S.; Obenauf, J. Kempe, R. J. Am. Chem. Soc. 2015, 137, 7998.
      (p) Soulard, V.; Villa, G.; Vollmar, D. P.; Renaud, P. J. Am. Chem. Soc. 2018, 140, 155.
      (q) Zhong, R.; Wei, Z.; Zhang, W.; Liu, S.; Liu, Q. Chem 2019, 5, 1552.
      (r) Ungnade, H. E. J. Org. Chem. 1948, 13, 361.
      (s) Weng, W.-Z.; Liang, H.; Zhang, B. Org. Lett. 2018, 20, 4979.
      (t) Polidano, K.; Williams, J. M. J.; Morrill, L. C. ACS Catal. 2019, 9, 8575.
      (u) Tohma, H.; Maegawa, T.; Takizawa, S.; Kita, Y. Adv. Synth. Catal. 2002, 344, 328.
      (v) Parshikov, I. A.; Modyanova, L. V.; Dovgilivich, E. V.; Terent'ev, P. B.; Vorob'eva, L. I.; Grishina, G. V. Chem. Heterocycl. Compd. (Engl. Transl.) 1992, 28, 159.
      (w) Aguilar Troyano, F. J.; Ballaschk, F.; Jaschinski, M.; Ӧzkaya, Y.; Gómez-Suórez, A. Chem. Eur. J. 2019, 25, 14054.
      (x) Bach, R. D.; Taaffee, T. H.; Holubka, J. W. J. Org. Chem. 1980, 45, 3439.
      (y) Boonyarattanakalin, S.; Martin, S. E.; Dykstra, S. A.; Peterson, B. R. J. Am. Chem. Soc. 2004, 126, 16379.
      (z) Matt, C.; Kern, C.; Streuff, J. ACS Catal. 2020, 10. 6409.
      (aa) Pujari, N. S.; Kulkarni, M. R.; Large, M. C. J.; Bassett, I. M.; Ponrathnam, S. J. Appl. Polym. Sci. 2005, 98, 58.
      (ab) Toogood, H. S.; Cheallaigh, A. N.; Tait, S.; Mansell, D. J.; Jervis, A.; Lygidakis, A.; Humphreys, L.; Takano, E.; Gardiner, J. M.; Scrutton, N. S. ACS Synth. Biol. 2015, 4, 1112.
      (ac) Zengin, G. Chem. Nat. Compd. 2011, 47, 550.

  • 加载中
    1. [1]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    2. [2]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    3. [3]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    4. [4]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    5. [5]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    6. [6]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    7. [7]

      Shaofeng GongZi-Wei DengChao WuWei-Min He . Stabilized carbon radical-mediated three-component functionalization of amino acid/peptide derivatives. Chinese Chemical Letters, 2025, 36(5): 110936-. doi: 10.1016/j.cclet.2025.110936

    8. [8]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    9. [9]

      Zhengzhong ZhuShaojun HuZhi LiuLipeng ZhouChongbin TianQingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641

    10. [10]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    11. [11]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    12. [12]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    13. [13]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    14. [14]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    15. [15]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    16. [16]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    17. [17]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    18. [18]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    19. [19]

      Li LiZhi-Xin YanChuan-Kun RanYi LiuShuo ZhangTian-Yu GaoLong-Fei DaiLi-Li LiaoJian-Heng YeDa-Gang Yu . Electro-reductive carboxylation of CCl bonds in unactivated alkyl chlorides and polyvinyl chloride with CO2. Chinese Chemical Letters, 2024, 35(12): 110104-. doi: 10.1016/j.cclet.2024.110104

    20. [20]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

Metrics
  • PDF Downloads(5)
  • Abstract views(3165)
  • HTML views(371)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return