Citation: Xie Jianwei, Shen Li, Zhang Jie, Gong Shaofeng. Transition-Metal-Free Decarboxylative Amidation of Aryl α-Keto Acids with Diphenylphosphoryl Azide: New Avenue for the Preparation of Primary Aryl Amides[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4284-4289. doi: 10.6023/cjoc202006030 shu

Transition-Metal-Free Decarboxylative Amidation of Aryl α-Keto Acids with Diphenylphosphoryl Azide: New Avenue for the Preparation of Primary Aryl Amides

  • Corresponding author: Xie Jianwei, cesxjw@foxmail.com Gong Shaofeng, simon.gong@huse.edu.cn
  • Received Date: 17 June 2020
    Revised Date: 13 July 2020
    Available Online: 30 July 2020

    Fund Project: the National Natural Science Foundation of China 21868032the Opening Foundation of Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan 2019BTRC001Project supported by the National Natural Science Foundation of China (No. 21868032) and the Opening Foundation of Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan (No. 2019BTRC001)

Figures(4)

  • In this paper, a novel transition-metal-free decarboxylative amidation of aryl α-keto acids with diphenylphosphoryl azide (DPPA) under mild conditions has been developed. The reaction proceeded smoothly to afford the corresponding primary aryl amide products in good to excellent yields under air and showed excellent functional group tolerance. Gram-scale reaction was also performed to produce the desired product in high yield. In addition, the mechanism of the present reaction was investigated.
  • 加载中
    1. [1]

      Zabicky, J. The Chemistry of Amides, John-Wiley & Sons, Chichester, 1970.

    2. [2]

      Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Material Science, Wiley, New York, 2000.

    3. [3]

      For some selected reviews, see: (a) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer Jr, J. J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.
      (b) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606.
      (c) Allen, C. L.; Williams, J. M. J. Chem. Soc. Rev. 2011, 40, 3405.
      (d) Kaiser, D.; Bauer, A.; Lemmerer, M.; Maulide, N. Chem. Soc. Rev. 2018, 47, 7899.
      (e) de Figueiredo, R. M.; Suppo, J.-S.; Campagne, J.-M. Chem. Rev. 2016, 116, 12029.
      (f) Dunetz, J. R.; Magano, J.; Weisenburger, G. A. Org. Process Res. Dev. 2016, 20, 140.

    4. [4]

      (a) Gooíen, L. J.; Rodríguez, N.; Gooíen, K. Angew. Chem., Int. Ed. 2008, 47, 3100.
      (b) Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
      (c) Shang, R.; Liu, L. Sci. China: Chem. 2011, 54, 1670.

    5. [5]

      (a) Gooíen, L. J.; Rudolphi, F.; Oppel, C.; Rodríguez, N. Angew. Chem., Int. Ed. 2008, 47, 3043.
      (b) Shang, R.; Fu, Y.; Li, J.-B.; Zhang, S.-L.; Guo, Q.-X.; Liu, L. J. Am. Chem. Soc. 2009, 131, 5738.
      (c) Fang, P.; Li, M.; Ge, H. J. Am. Chem. Soc. 2010, 132, 11898.
      (d) Li, M.; Ge, H. Org. Lett. 2010, 12, 3464.
      (e) Miao, J.; Ge, H. Org. Lett. 2013, 15, 2930.
      (f) Li, D.; Wang, M.; Liu, J.; Zhao, Q.; Wang, L. Chem. Commun. 2013, 49, 3640.
      (g) Wang, C.; Wang, S.; Li, H.; Yan, J.; Chi, H.; Chen, X.; Zhang, Z. Org. Biomol. Chem. 2014, 12, 1721.
      (h) Song, Q.; Feng, Q.; Yang, K. Org. Lett. 2014, 16, 624.
      (i) Yan, K.; Yang, D.; Wei, W.; Zhao, J.; Shuai, Y.; Tian, L.; Wang, H. Org. Biomol. Chem. 2015, 13, 7323.
      (j) Nanjo, T.; Kato, N.; Zhang, X.; Takemoto, Y. Chem.-Eur. J. 2019, 25, 15504.
      (k) Jin, J.; Zhang, F.; Wang, Y. Acta Chim. Sinica 2019, 77, 889(in Chinese).
      (靳继康, 张凤莲, 汪义丰, 化学学报, 2019, 77, 889.)

    6. [6]

      For some selected reviews and recent examples, see: (a) Weaver, J. D.; Recio Ⅲ, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.
      (b) Li, Z.; Jiang, Y.-Y.; Yeagley, A. A.; Bour, J. P.; Liu, L.; Chruma, J. J.; Fu, Y. Chem.-Eur. J. 2012, 18, 14527.
      (c) Dzik, W. I.; Lange, P. P.; Gooßen, L. J. Chem. Sci. 2012, 3, 2671.
      (d) Kim, M.; Park, J.; Sharma, S.; Kim, A.; Park, E.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Chem. Commun. 2013, 49, 925.
      (e) Wang, H.; Guo, L.-N.; Duan, X.-H. Chem. Commun. 2014, 50, 7382.
      (f) Liu, C.; Wang, X.; Li, Z.; Cui, L.; Li, C. J. Am. Chem. Soc. 2015, 137, 9820.
      (g) Wang, H.; Zhou, S.-L.; Guo, L.-N.; Duan, X.-H. Tetrahedron 2015, 71, 630.
      (h) Jiang, Q.; Jia, J.; Xu, B.; Zhao, A.; Guo, C.-C. J. Org. Chem. 2015, 80, 3586.
      (i) Wu, Y.; Sun, L.; Chen, Y.; Zhou, Q.; Huang, J.-W.; Miao, H.; Luo, H.-B. J. Org. Chem. 2016, 81, 1244.
      (j) Xie, L.-Y.; Peng, S.; Lu, L.-H.; Hu, J.; Bao, W.-H.; Zeng, F.; Tang, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 7989.
      (k) Xie, L.-Y.; Hu, J.-L.; Song, Y.-X.; Jia, G.-K.; Lin, Y.-W.; He, J.-Y.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 19993.
      (l) Penteado, F.; Lopes, E. F.; Alves, D.; Perin, G.; Jacob, R. G.; Lenardão, E. J. Chem. Rev. 2019, 119, 7113.

    7. [7]

      Liu, J.; Liu, Q.; Yi, H.; Qin, C.; Bai, R.; Qi, X.; Lan, Y.; Lei, A. Angew. Chem., Int. Ed. 2014, 53, 502.  doi: 10.1002/anie.201308614

    8. [8]

      (a) Xu, W.-T.; Huang, B.; Dai, J.-J.; Xu, J.; Xu, H.-J. Org. Lett. 2016, 18, 3114.
      (b) Xu, X.-L.; Xu, W.-T; Wu, J.-W.; He, J.-B.; Xu, H.-J. Org. Biomol. Chem. 2016, 14, 9970.

    9. [9]

      Xu, N.; Liu, J.; Li D.; Wang, L. Org. Biomol. Chem. 2016, 14, 4749.  doi: 10.1039/C6OB00676K

    10. [10]

      Pimpasri, C.; Sumunnee, L.; Yotphan, S. Org. Biomol. Chem. 2017, 15, 4320.  doi: 10.1039/C7OB00776K

    11. [11]

      Ilangovan, A.; Sakthivel, P.; Sakthivel, P. Org. Chem. Front. 2016, 3, 1680.  doi: 10.1039/C6QO00343E

    12. [12]

      (a) Wang, N.; Ma, P.; Xie, J.; Zhang, J. Mol. Diversity 2020, DOI:http://dx.doi.org/10.1007/s11030-020-10058-6.
      (b) Xie, J.; Wang, X.; Wu, F.; Zhang, J. Chin. J. Org. Chem. 2019, 39, 3026(in Chinese).
      (谢建伟, 汪小创, 吴丰田, 张洁, 有机化学, 2019, 39, 3026.)
      (c) Xie, J.-W.; Yao, Z.-B.; Wang, X.-C.; Zhang, J. Tetrahedron 2019, 75, 3788.
      (d) Shen, L.; Zhang, J.; Xie, J. Chin. J. Org. Chem. 2019, 39, 1153(in Chinese).
      (沈丽, 张洁, 谢建伟, 有机化学, 2019, 39, 1153.)

    13. [13]

      Wadhwa, K.; Yang, C.; West, P. R.; Deming, K. C.; Chemburkar, S. R.; Reddy, R. E. Synth. Commun. 2008, 38, 4434.  doi: 10.1080/00397910802369554

    14. [14]

      Li, Y.; Chen, H.; Liu, J.; Wan, X. and Xu, Q. Green Chem. 2016, 18, 4865.  doi: 10.1039/C6GC01565D

    15. [15]

      Dubey, P.; Gupta, S.; Singh, A. K. Dalton Trans. 2017, 46, 13065.  doi: 10.1039/C7DT02592K

    16. [16]

      Ray, R.; Hazari, A. S.; Chandra, S.; Maiti, D.; Lahiri, G. K. Chem.-Eur. J. 2018, 24, 1067.  doi: 10.1002/chem.201705601

    17. [17]

      Deng, T.; Wang, C.-Z. ChemCatChem 2017, 9, 1349.  doi: 10.1002/cctc.201700016

    18. [18]

      Ribeiro, R. S.; Esteves, P. M.; Mattos, M. C. S. Synthesis 2011, 739.

    19. [19]

      Li, X.-Q.; Wang, W.-K.; Han, Y.-X.; Zhang, C. Adv. Synth. Catal. 2010, 352, 2588.  doi: 10.1002/adsc.201000318

    20. [20]

      Gowda, R. R.; Chakraborty, D, Eur. J. Org. Chem. 2011, 2226.

    21. [21]

      Allam, B. K.; Singh, K. N. Tetrahedron Lett. 2011, 52, 5851.  doi: 10.1016/j.tetlet.2011.08.150

    22. [22]

      Jaita, S.; Phakhodee, W.; Chairungsi, N.; Pattarawarapan, M. Tetrahedron Lett. 2018, 59, 3571.  doi: 10.1016/j.tetlet.2018.08.035

  • 加载中
    1. [1]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    2. [2]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    3. [3]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    4. [4]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    5. [5]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    6. [6]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    7. [7]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    8. [8]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    9. [9]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    12. [12]

      Hongmei YuBaoxi ZhangMeiju LiuCheng XingGuorong HeLi ZhangNingbo GongYang LuGuanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032

    13. [13]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    14. [14]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    15. [15]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    16. [16]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    17. [17]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    18. [18]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    19. [19]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    20. [20]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

Metrics
  • PDF Downloads(51)
  • Abstract views(3030)
  • HTML views(332)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return