Citation: Sun Qiangsheng, Sun Wei. Recent Progress in C(sp3)-H Asymmetric Oxidation Catalyzed by Bioinspired Metal Complexes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(11): 3686-3696. doi: 10.6023/cjoc202006008 shu

Recent Progress in C(sp3)-H Asymmetric Oxidation Catalyzed by Bioinspired Metal Complexes

  • Corresponding author: Sun Wei, wsun@licp.cas.cn
  • Received Date: 5 June 2020
    Revised Date: 19 June 2020
    Available Online: 8 July 2020

    Fund Project: the National Natural Science Foundation of China 21473226the National Natural Science Foundation of China 21902166the Key Research Program of Frontier Sciences, CAS QYZDJ-SSW-SLH051the Natural Science Foundation of Jiangsu Province BK20170420the National Natural Science Foundation of China 21773273Project supported by the National Natural Science Foundation of China (Nos. 21773273, 21473226, 21902166), the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-SLH051) and the Natural Science Foundation of Jiangsu Province (No. BK20170420)

Figures(19)

  • C—H oxidation represents one of the most important reactions in organic chemistry. In particular, asymmetric C—H oxidation, which can directly convert simple alkanes into chiral alcohols, ketones, aldehydes and so on, provides more economic and efficient access to the synthesis of complex molecules. Although increasing efforts have been devoted to this area, asymmetric C—H oxidation is still far away from the goal due to the inert nature of C—H and the subtle stereo-difference of C—H bonds. The factors that dictate the selectivity of asymmetric C—H oxidation, mechanism of the C—H oxidation catalyzed by enzyme and some successful examples achieved by biomimetic metal complexes bearing various ligands are reviewed.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Guo, M.; Corona, T.; Ray, K.; Nam, W. ACS Cent. Sci. 2019, 5, 13.
      (b) Ray, K.; Pfaff, F. F.; Wang, B.; Nam, W. J. Am. Chem. Soc. 2014, 136, 13942.
      (c) Yin, G. Acc. Chem. Res. 2013, 46, 483.
      (d) Que, L. Jr.; Tolman, W. B. Nature 2008, 455, 333.

    4. [4]

      Luo, Y.-R. Handbook of Bond Dissociation Energies in Organic Compounds, CRC press, Boca Raton, 2003.

    5. [5]

      Asensio, G.; Castellano, G.; Mello, R.; González Núñez, M. E. J. Org. Chem. 1996, 61, 5564.  doi: 10.1021/jo9604189

    6. [6]

      Chen, M. S.; White, M. C. Science 2007, 318, 783.  doi: 10.1126/science.1148597

    7. [7]

      Asensio, G.; González Núñez, M. E.; Bernardini, C. B.; Mello, R.; Adam, W. J. Am. Chem. Soc. 1993, 115, 7250.  doi: 10.1021/ja00069a025

    8. [8]

      Lee, M.; Sanford, M. S. J. Am. Chem. Soc. 2015, 137, 12796.  doi: 10.1021/jacs.5b09099

    9. [9]

      Luo, F. Chin. J. Org. Chem. 2019, 39, 3084 (in Chinese).
       

    10. [10]

      Tenaglia, A.; Terrenova, E.; Waegell, B. J. Org. Chem. 1992, 57, 5523.  doi: 10.1021/jo00046a040

    11. [11]

      Gómez, L.; Garcia-Bosch, I.; Company, A.; Benet-Buchholz, J.; Polo, A.; Sala, X.; Ribas, X.; Costas, M. Angew. Chem., Int. Ed. 2009, 48, 5720.  doi: 10.1002/anie.200901865

    12. [12]

      Chen, K.; Eschenmoser, A.; Baran, P. S. Angew. Chem., Int. Ed. 2009, 48, 9705.  doi: 10.1002/anie.200904474

    13. [13]

      Du, X.; Houk, K. N. J. Org. Chem. 1998, 63, 6480.  doi: 10.1021/jo9801519

    14. [14]

    15. [15]

      (a) Ortiz de Montellano, P. R. Chem. Rev. 2010, 110, 932.
      (b) Abu-Omar, M. M.; Loaiza, A.; Hontzeas, N. Chem. Rev. 2005, 105, 2227.

    16. [16]

      (a) Groves, J. T.; Viski, P. J. Am. Chem. Soc. 1989, 111, 8537.
      (b) Groves, J. T.; Viski, P. J. Org. Chem. 1990, 55, 3628.

    17. [17]

      Gross, Z.; Ini, S. Org. Lett. 1999, 1, 2077.  doi: 10.1021/ol991131b

    18. [18]

      Zhang, R.; Yu, W.-Y.; Lai, T.-S.; Che, C.-M. Chem. Commun. 1999, 2441.

    19. [19]

      Srour, H.; Le Maux, P.; Simonneaux, G. Inorg. Chem. 2012, 51, 5850.  doi: 10.1021/ic300457z

    20. [20]

      Maux, P. L.; Srour, H. F.; Simonneaux, G. Tetrahedron 2012, 68, 5824.  doi: 10.1016/j.tet.2012.05.014

    21. [21]

      Frost, J. R.; Huber, S. M.; Breitenlechner, S.; Bannwarth, C.; Bach, T. Angew. Chem., Int. Ed. 2015, 54, 691.

    22. [22]

      (a) Fackler, P.; Berthold, C.; Voss, F.; Bach, T. J. Am. Chem. Soc. 2010, 132, 15911.
      (b) Fackler, P.; Huber, S. M.; Bach, T. J. Am. Chem. Soc. 2012, 134, 12869.

    23. [23]

      Burg, F.; Gicquel, M.; Breitenlechner, S.; Pöthig, A.; Bach, T. Angew. Chem., Int. Ed. 2018, 57, 2953.  doi: 10.1002/anie.201712340

    24. [24]

      Burg, F.; Breitenlechner, S.; Jandl, C.; Bach, T. Chem. Sci. 2020, 11, 2121.  doi: 10.1039/C9SC06089H

    25. [25]

      (a) Katsuki, T. Coord. Chem. Rev. 1995, 140, 189.
      (b) Bhatia, B.; Punniyamurthy, T.; Iqbal, J. In Asymmetric Oxidation Reactions, Ed.: Katsuki, T., Oxford University Press, New York, 2001, p. 1~15.
      (c) Matsumoto, K.; Saito, B.; Katsuki, T. Chem. Commun. 2007, 3619.
      (d)Fan, Q.-H.; Ding, K. Top. Organomet. Chem. 2011, 36, 207.
      (e) Shaw, S.; White, J. D. Chem. Rev. 2019, 119, 9381.

    26. [26]

      Hamachi, K.; Irie, I.; Katsuki, T. Tetrahedron Lett. 1996, 37, 4979.  doi: 10.1016/0040-4039(96)00984-7

    27. [27]

      Miyafuji, A.; Katsuki, T. Tetrahedron 1998, 54, 10339.  doi: 10.1016/S0040-4020(98)00489-X

    28. [28]

      Punniyamurthy, T.; Miyafuji, A.; Katsuki, T. Tetrahedron Lett. 1998, 39, 8295.  doi: 10.1016/S0040-4039(98)80001-4

    29. [29]

      Murahashi, S. I.; Noji, S.; Komiya, N. Adv. Synth. Catal. 2004, 346, 195.  doi: 10.1002/adsc.200303190

    30. [30]

      Murahashi, S.; Noji, S.; Hirabayashi, T.; Komiya, N. Tetrahedron: Asymmetry 2005, 16, 3527.  doi: 10.1016/j.tetasy.2005.08.056

    31. [31]

      Milan, M.; Bietti, M.; Costas, M. ACS Cent. Sci. 2017, 3, 196.  doi: 10.1021/acscentsci.6b00368

    32. [32]

      (a) Mas-Ballesté, R.; Que, L. Jr. J. Am. Chem. Soc. 2007, 129, 15964.
      (b) Lyakin, O. Y.; Ottenbacher, R. V.; Bryliakov, K. P.; Talsi, E. P. ACS Catal. 2012, 2, 1196.

    33. [33]

      (a) Du, J.; Miao, C.; Xia, C.; Lee, Y.-M.; Nam, W.; Sun, W. ACS Catal. 2018, 8, 4528.
      (b) Li, X.-X.; Guo, M.; Qiu, B.; Cho, K.-B.; Sun, W.; Nam, W. Inorg. Chem. 2019, 58, 14842.

    34. [34]

      Milan, M.; Bietti, M.; Costas, M. Org. Lett. 2018, 20, 2720.  doi: 10.1021/acs.orglett.8b00929

    35. [35]

      Talsi, E. P.; Samsonenko, D. G.; Ottenbacher, R. V.; Bryliakov, K. P. ChemCatChem 2017, 9, 4580.  doi: 10.1002/cctc.201701169

    36. [36]

      Sun, W.; Sun, Q. Acc. Chem. Res. 2019, 52, 2370.  doi: 10.1021/acs.accounts.9b00285

    37. [37]

      (a) Wang, B.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Chem.-Eur. J. 2012, 18, 6750.
      (b) Wang, B.; Wang, S.; Xia, C.; Sun, W. Chem.-Eur. J. 2012, 18, 7332.
      (c) Wu, M.; Wang, B.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2009, 11, 3622.
      (d) Miao, C.; Wang, B.; Wang, Y.; Xia, C.; Lee, Y.-M.; Nam, W.; Sun, W. J. Am. Chem. Soc. 2016, 138, 936.
      (e) Shen, D.; Qiu, B.; Xu, D.; Miao, C.; Xia, C.; Sun, W. Org. Lett. 2016, 18, 372.
      (f) Wang, W.; Sun, Q.; Xia, C.; Sun, W. Chin. J. Catal. 2018, 39, 1463.

    38. [38]

      Qiu, B.; Xu, D.; Sun, Q.; Miao, C.; Lee, Y.-M.; Li, X.-X.; Nam, W.; Sun, W. ACS Catal. 2018, 8, 2479.  doi: 10.1021/acscatal.7b03601

    39. [39]

      Qiu, B.; Xu, D.; Sun, Q.; Lin, J.; Sun, W. Org. Lett. 2019, 21, 618.  doi: 10.1021/acs.orglett.8b03652

    40. [40]

      Cianfanelli, M.; Olivo, G.; Milan, M.; Klein Gebbink, R. J. M.; Ribas, X.; Bietti, M.; Costas, M. J. Am. Chem. Soc. 2020, 142, 1584.  doi: 10.1021/jacs.9b12239

  • 加载中
    1. [1]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    2. [2]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    5. [5]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    6. [6]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    14. [14]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    15. [15]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

Metrics
  • PDF Downloads(40)
  • Abstract views(3920)
  • HTML views(562)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return