Citation: Ju Mingjie, Xu Binbin, Xu Ligong. Synthesis and Properties of Blood Compatible Polyurethane Elastomer[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4344-4349. doi: 10.6023/cjoc202006004 shu

Synthesis and Properties of Blood Compatible Polyurethane Elastomer

  • Corresponding author: Xu Binbin, binbinxu@ecust.edu.cn Xu Ligong, xuligong@ecust.edu.cn
  • Received Date: 4 June 2020
    Revised Date: 16 June 2020
    Available Online: 5 August 2020

    Fund Project: National Natural Science Foundation of China 22001072Shanghai Sailing Program 19YF1410300Project supported by National Natural Science Foundation of China (No. 22001072), and Shanghai Sailing Program (No. 19YF1410300)

Figures(6)

  • Polyurethane materials are widely used in biomedical fields such as implantable catheters and drug delivery. However, their blood compatibility is difficult to meet the rigorous requirements needed for a new generation of biomedical devices. A series of polyurethane elastomers were prepared using polycarbonate diols (PC), polyoxytertramethylene glycol (PTMG), isophorone diisocyanate (IPDI) and chain extender (BDO, E-300) as raw materials. The properties of polyurethane elastomers were investigated by FT-IR spectrum, differential scanning calorimeter (DSC) analysis, mechanical test, water contact angle measurement, hemolysis and cell compatibility test. The mechanical results show that the materials have superior tensile strength and elongation, meanwhile, the homolysis and cells compatibility tests exhibit that they have good bio-compatibility. In addition, the materials can achieve the best performance by using IPDI as well as chain extender E-300 as the hard segment and PC as the soft segment.
  • 加载中
    1. [1]

      Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Chem. Rev. 2015, 115, 12407.  doi: 10.1021/acs.chemrev.5b00355

    2. [2]

      Zhang, Y.; Li, Y.; Wang, H.; Zhang, Z.; Feng, Y.; Tian, Q.; Li, N.; Mei, J.; Su, J.; Tian, H. ACS Appl. Mater. Interfaces 2019, 11, 39351.  doi: 10.1021/acsami.9b13193

    3. [3]

      Huang, Y.; Tang, Z.; Liu, Z.; Wei, J.; Hu, H.; Zhi, C. Nano-Micro Lett. 2018, 10, 38.  doi: 10.1007/s40820-018-0191-7

    4. [4]

      Hsieh, C.-T.; Hsu, S.-H. ACS Appl. Mater. Interfaces 2019, 11, 32746.  doi: 10.1021/acsami.9b10784

    5. [5]

      Mankoci, S.; Ewing, J.; Dalai, P.; Sahai, N.; Barton, H. A.; Joy, A. Biomacromolecules 2019, 20, 4096.  doi: 10.1021/acs.biomac.9b00939

    6. [6]

      Albers, P. T. M.; van der Ven, L. G. J.; van Benthem, R. A. T. M.; Esteves, A. C. C.; de With, G. Macromolecules 2020, 53, 862.  doi: 10.1021/acs.macromol.9b02275

    7. [7]

      Li, L.; Chi, X.; Yan, J.; Zhao, Z. Chin. J. Org. Chem. 2018, 38, 955(in Chinese).
       

    8. [8]

      Best, C. A.; Pepper, V. K.; Ohst, D.; Bodnyk, K.; Heuer, E.; Onwuka, E. A.; King, N.; Strouse, R.; Grischkan, J.; Breuer, C. K.; Johnson, J.; Chiang, T. Int. J. Pediatr. Otorhi. 2018, 104, 155.  doi: 10.1016/j.ijporl.2017.10.036

    9. [9]

      Mahanta, A. K.; Mittal, V.; Singh, N.; Dash, D.; Malik, S.; Kumar, M.; Maiti, P. Macromolecules 2015, 48, 2654.  doi: 10.1021/acs.macromol.5b00030

    10. [10]

      Zhang, Y.; He, X.; Ding, M.; He, W.; Li, J.; Li, J.; Tan, H. Biomacromolecules 2018, 19, 279.  doi: 10.1021/acs.biomac.7b01016

    11. [11]

      Blakney, A. K.; Simonovsky, F. I.; Suydam, I. T.; Ratner, B. D.; Woodrow, K. A. ACS Biomater. Sci. Eng. 2016, 2, 1595.  doi: 10.1021/acsbiomaterials.6b00346

    12. [12]

      Xue, J.; He, M.; Liu, H.; Niu, Y.; Crawford, A.; Coates, P. D.; Chen, D.; Shi, R.; Zhang, L. Biomaterials 2014, 35, 9395.  doi: 10.1016/j.biomaterials.2014.07.060

    13. [13]

      Zhang, R.-Z.; Ren, Y.-Y.; Yan, D.-K.; Guo, P.-Y.; Li, L.-J. Prog. Org. Coat. 2017, 104, 11.  doi: 10.1016/j.porgcoat.2016.12.002

    14. [14]

      Xu, Y.; Wang, W.; Chen, J.; Lin, S. Chin. J. Org. Chem. 2018, 38, 2161(in Chinese).
       

    15. [15]

      Luo, N.; Wang, D.-N.; Ying, S.-K. Polymer 1996, 37, 3577.  doi: 10.1016/0032-3861(96)00166-8

    16. [16]

      Feng, C.; Huang, X. Acc. Chem. Res. 2018, 51, 2314.  doi: 10.1021/acs.accounts.8b00307

    17. [17]

      Du, J.; Huang, D.; Wei, Y.; Lian, X.; Hu, Y.; Wang, K.; Liu, Y.; Chen, W. Chem. J. Chin. Univ. 2018, 39, 1580(in Chinese).  doi: 10.7503/cjcu20170749

    18. [18]

      Que, Y.; Liu, Y.; Tan, W.; Feng, C.; Shi, P.; Li, Y.; Huang, X. ACS Macro Lett. 2016, 5, 168.  doi: 10.1021/acsmacrolett.5b00935

    19. [19]

      Gao, A.; Hang, R.; Li, W.; Zhang, W.; Li, P.; Wang, G.; Bai, L.; Yu, X.-F.; Wang, H.; Tong, L.; Chu, P. K. Biomaterials 2017, 140, 201.  doi: 10.1016/j.biomaterials.2017.06.023

    20. [20]

      Li, X.; Tang, J.; Bao, L.; Chen, L.; Hong, F. Carbohydr. Polym. 2017, 178, 394.  doi: 10.1016/j.carbpol.2017.08.120

    21. [21]

      Ma, Z.; Bai, J.; Wang, Y.; Jiang, X. ACS Appl. Mater. Interfaces 2014, 6, 2431.  doi: 10.1021/am404860q

    22. [22]

      Zhang, J.; Sun, Z.; Zhu, H.; Guo, Q.; He, C.; Xia, A.; Mo, H.; Huang, X.; Shen, J. J. Mater. Chem. B 2016, 4, 1116.  doi: 10.1039/C5TB01877C

    23. [23]

      Nie, S.; Tang, M.; Cheng, C.; Yin, Z.; Wang, L.; Sun, S.; Zhao, C. Biomater. Sci. 2014, 2, 98.  doi: 10.1039/C3BM60165J

  • 加载中
    1. [1]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    2. [2]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    3. [3]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    6. [6]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    7. [7]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    8. [8]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    11. [11]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    12. [12]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    13. [13]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    14. [14]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    17. [17]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    18. [18]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    19. [19]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    20. [20]

      Chengbin Gong Guona Zhang Qian Tang Hong Lei Ling Kong Wenshan Ren . Development of a Practical Teaching System for the Applied Chemistry Major Emphasizing “Industry-Education Integration, University-Enterprise Cooperation, and Multi-Dimensional Combination”. University Chemistry, 2024, 39(6): 220-225. doi: 10.3866/PKU.DXHX202309104

Metrics
  • PDF Downloads(30)
  • Abstract views(3337)
  • HTML views(441)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return