Citation: Hu Zhifang, Peng Lifen, Qiu Renhua, Orita Akihiro. Recent Progress of Protecting Groups for Terminal Alkynes[J]. Chinese Journal of Organic Chemistry, ;2020, 40(10): 3112-3119. doi: 10.6023/cjoc202005094 shu

Recent Progress of Protecting Groups for Terminal Alkynes

  • Corresponding author: Peng Lifen, 1060137@hnust.edu.cn Qiu Renhua, renhuaqiu1@hnu.edu.cn Orita Akihiro, orita@dac.ous.ac.jp
  • Received Date: 31 May 2020
    Revised Date: 2 July 2020
    Available Online: 22 July 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21802040), the Natural Science Fund Youth Project of Hunan Province (No. 2018JJ3145) and the Open Foundation of Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology (No. E21843)the National Natural Science Foundation of China 21802040the Open Foundation of Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology E21843the Natural Science Fund Youth Project of Hunan Province 2018JJ3145

Figures(14)

  • The protection/deprotection of functional group is one of the fundamental technologies in organic synthesis. An ideal protecting group needs to satisfy the following issues:facile introduction, stability and facile deprotection. Protection of an acetylenic hydrogen is often necessary because of its acidity. In this review, the recent progress of protecting groups for terminal alkyne is highlighted. Based on different polarity of protecting groups, less polar protecting groups such as trimethylsilyl (TMS), trimethylgermanium group (Me3Ge) and high polar protecting groups like (3-cyanopropyl)dimethylsilyl (CPDMS), (3-cyanopropyl)diisopropylsilyl (CPDIPS) and diphenylphosphoryl (Ph2P(O)) are introduced in detail.
  • 加载中
    1. [1]

      Greene, T. W.; Wuts. P. G. M. Protective Groups in Organic Synthesis, 3th ed., John Wiley & Sons, Inc., New York, 1999.

    2. [2]

      (a) Stang, P. J.; Diederich. F. Modern Acetylene Chemistry, VCH, Weinheim, 1995.
      (b) Diederich, F.; Stang, P. J.; Tykwinski, R. R. Acetylene Chemistry, Willey-VCH Verlag GmbH & CO. KgaA, Weinheim, 2005.
      (c) Peng, L.-F.; Zhang, S.-W.; Wang, B.-H.; Xun, M.-S.; Tang, Z.-L.; Jiao, Y.-C.; Xu, X.-H. Chin. J. Org. Chem. 2018, 38, 519(in Chinese).
      (彭丽芬, 张思维, 王丙昊, 寻梦硕, 唐子龙, 焦银春, 许新华, 有机化学, 2018, 38, 519.)
      (d) Peng, L.-F.; Wang, B.-H.; Wang, M.; Tang, Z.-L.; Jiang, Y.-Z.; Jiao, Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 235.
      (e) Wang, Z.; Yang, L.; Liu, H.-L.; Bao, W.-H.; Tan, Y.-Z.; Wang, M.; Tang, Z.; He, W.-M. Chin. J. Org. Chem. 2018, 38, 2639(in Chinese).
      (王峥, 杨柳, 刘慧兰, 谭英芝, 包文虎, 汪明, 唐子龙, 何卫民, 有机化学, 2018, 38, 2639.)
      (f) Peng, L.-F.; Lei, J.-Y.; Wu, L.; Tang, Z.-L.; Luo, Z.-P.; Jiao, Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 271.
      (g) Li, W.-Y.; Yin, G.-X.; Huang, L.; Xiao, Y.; Fu, Z.-M.; Xin, X.; Liu, F.; Li, Z.-Z. He, W.-M. Green Chem. 2016, 18, 4879.
      (h) Wu, C.; Wang, Z.; Hu, Z.; Zeng, F.; Zhang, X.-Y.; Cao, Z.; Tang, Z.; . He, W.-M.; Xu, X.-H. Org. Biomol. Chem. 2018, 16, 3177.
      (i) Peng, L.-F.; Peng, C.; Wang, M.; Tang, Z.-L.; Jiao, Y.-C.; Xu, X.-H. Chin. J. Org. Chem. 2018, 38, 3048(in Chinese).
      (彭丽芬, 彭超, 汪明, 唐子龙, 焦银春, 许新华, 有机化学, 2018, 38, 3048.)
      (j) Wu, L.; Peng, L.-F.; Hu, Z.-F.; Wang, H.; Tang, Z.-L.; Jiao Y.-C.; Xu, X.-H. J. Chem. Res. 2019, 43, 503.

    3. [3]

      (a) Mao, G.; Orita, A.; Fenenko, L.; Yahiro, M.; Adachi, C.; Otera, J. Mater. Chem. Phys. 2009, 115, 378.
      (b) Fenenko, L.; Shao, G.; Orita, A.; Yahiro, M.; Otera, J.; Svechnikov, S.; Adachi, C. Chem. Commun. 2007, 2278.
      (c) Matsuo, D.; Yang, X.; Hamada, A.; Morimoto, K.; Kato, T.; Yahiro, M.; Adachi, C.; Orita, A.; Otera, J. Chem. Lett. 2010, 39, 1300.
      (d) Oyamada, T.; Shao, G.; Uchiuzou, H.; Nakanotani, H.; Orita, A.; Otera, J.; Yahiro, M.; Adachi, C. Jpn. J. Appl. Phys., Part 2 2006, 45, 46.
      (e) Yang, X.; Kajiyama, S.; Fang, J.-K.; Xu, F.; Uemura, Y.; Koumura, N.; Hara, K.; Orita, A.; Otera, J. Bull. Chem. Soc. Jpn. 2012, 85, 687.
      (f) Yang, X.; Fang, J.-K.; Suzuma, Y.; Xu, F.; Orita, A.; Otera, J.; Kajiyama, S.; Koumura, N.; Hara, K. Chem. Lett. 2011, 40, 620.
      (g) Peng, L.-F.; Hu, Z.-F.; Wang, H.; Wu, L.; Jiao, Y.-C.; Tang, Z.-L.; Xu, X.-H. RSC. Adv. 2020, 10232.
      (h) Peng, L.-F.; Lei, J.-Y.; Wu, L.; Tang, Z.-L.; Luo, Z.-P.; Jiao Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 271.
      (i) Peng, L.-F.; Li, R.-Z.; Tang, Z.-L.; Chen, J.-Y.; Yi, R.-N.; Xu, X.-H. Tetrahedron 2017, 73, 3099.
      (l) Peng, L.-F.; Jiang, J.; Peng, C.; Dai, N.-N.; Tang, Z.-L.; Jiao Y.-C.; Chen, J.-Y.; Xu, X.-H. Chin. J. Org. Chem. 2017, 37, 3013(in Chinese).
      (彭丽芬, 蒋娟, 彭超, 代宁宁, 唐子龙, 焦银春, 陈锦杨, 许新华, 有机化学, 2017, 37, 3013.)
      (m) Peng, L.-F.; Hu, Z.-F.; Lu, Q.-C.; Tang, Z.-L.; Jiao Y.-C.; Xu, X.-H. Chin. Chem. Lett. 2019, 30, 2151.
      (n) Wu, L.; Peng, L.-F.; Hu, Z.-F.; Jiao, Y.-C.; Tang, Z.-L.; Xu, X.-H. Curr. Org. Synth. 2020, 17, 271.

    4. [4]

      (a) Rankin, G. M.; Maxwell-Cameron, I.; Painter, G. F.; Larsen, D. S. J. Org. Chem. 2013, 78, 5264.
      (b) Urones, B.; Gómez Arrayás, R.; Carretero, J. C. Org. Lett. 2013, 15, 1120.
      (c) Balbuena, P.; Gonçalves-Pereira, R.; Jiménez Blanco, J. L.; García-Moreno, M. I.; Lesur, D.; Ortiz Mellet, C.; García Fernández, J. M. J. Org. Chem. 2013, 78, 1390.
      (d) Muranaka, K.; Ichikawa, S.; Matsuda, A. J. Org. Chem. 2011, 76, 9278.
      (e) Ihara, H.; Koyanagi, M.; Suginome, M. Org. Lett. 2011, 13, 2662.
      (f) Liang, H.; Corey, E. J. Org. Lett. 2011, 13, 4120.

    5. [5]

      (a) Palmer, C. J.; Casida, J. E. Tetrahedron Lett. 1990, 31, 2857.
      (b) Andreev, A. A.; Konshin, V. V.; Komarov, N. V.; Rubin, M.; Brouwer, C.; Gevorgyan, V. Org. Lett. 2004, 6, 421.
      (c) Jiang, H.; Zhu, S. Tetrahedron Lett. 2005, 46, 517.

    6. [6]

      Ernst, A.; Gobbi, L.; Vasella, A. Tetrahedron Lett. 1996, 37, 7959.  doi: 10.1016/0040-4039(96)01838-2

    7. [7]

      Höger, S.; Bonrad, K. J. Org. Chem. 2000, 65, 2243.  doi: 10.1021/jo991746m

    8. [8]

      Gaefke, G.; Höger, S. Synthesis 2008, 2155.

    9. [9]

      Yang, X.; Matsuo, D.; Suzuma, Y.; Fang, J.-K.; Xu, F.; Orita, A.; Otera, J. Synlett 2011, 2402.

    10. [10]

      (a) Ito, H.; Arimoto, K.; Senusui, H.O.; Hosomi, A. Tetrahedron Lett. 1997, 38, 3977.
      (b) Sugita, H.; Hatanaka, Y.; Hiyama, T. Chem. Lett. 1996, 25, 379.

    11. [11]

      Davidsohn, W. E.; Henry, M. C. Chem. Rev. 1967, 67, 73.  doi: 10.1021/cr60245a003

    12. [12]

      (a) Cai, C.; Vasella, A. Helv. Chim. Acta 1995, 78, 732.
      (b) Nishikawa, T.; Ino, A.; Isobe, M.; Tetrahedron 1994, 50, 1449.
      (c) Scott, L. T.; Cooney, M. J.; Johnels, D. J. Am. Chem. Soc. 1990, 112, 4054.
      (d) Lu, Y.-F.; Fallis, A. G. Tetrahedron Lett. 1993, 34, 3367.
      (e) Nielsen, M. B.; Diederich, F. Synlett 2002, 544.
      (f) Tobe, Y.; Utsumi, N.; Kawabata, K.; Naemura, K. Tetrahedron Lett. 1996, 37, 9325.

    13. [13]

      Nishikawa, T.; Ino, A.; Isobe, M. Tetrahedron 1994, 50, 1449.  doi: 10.1016/S0040-4020(01)80629-3

    14. [14]

      Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.  doi: 10.1021/cr050992x

    15. [15]

      Li, H.-B.; Petersen, J. L.; Wang, K.-K. J. Org. Chem. 2001, 66, 7804.  doi: 10.1021/jo010687l

    16. [16]

      (a) Haley, M. M.; Bell, M. L.; English, J. J.; Johnson, C. A.; Weakley, T. J. R. J. Am. Chem. Soc. 1997, 119, 2956.
      (b) Bell, M. L.; Chiechi, R. C.; Johnson, C. A.; Kimbal, D. B.; Matzger, A.; Wan, W. B.; Weakley, T. J. R.; Haley, M. M. Tetrahedron 2001, 57, 3507.

    17. [17]

      (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.
      (b) Tohda, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1977, 777.
      (c) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara, N. Synthesis 1980, 627.

    18. [18]

      Peng, L.-F.; Xu, F.; Suzuma, Y.; Orita, A.; Otera, J. J. Org. Chem. 2013, 78, 12802.  doi: 10.1021/jo402176w

    19. [19]

      Peng, L.-F.; Xu, F.; Shinohara, K.; Orita, A.; Otera, J. Chem. Lett. 2014, 43, 1610.  doi: 10.1246/cl.140579

    20. [20]

      Tahara, K.; Furukawa, S.; Uji-i, H.; Uchino, T.; Ichikawa, T.; Zhang, J.; Mandouh, W.; Sonoda, M.; Schryver, F. C. D.; Feyter, S. D.; Tobe, Y. J. Am. Chem. Soc. 2006, 128, 16613.  doi: 10.1021/ja0655441

    21. [21]

      (a) Peña-López, M.; Ayán-Varela, M.; Sarandeses, L. A.; Sestelo, J. P. Chem. Eur. J. 2010, 16, 9905.
      (b) Dogan, J.; Schulte, J. B.; Swiegers, G. F.; Wild, S. B. J. Org. Chem. 2000, 65, 951.
      (c) Lu, E.; Chen, Y.; Zhou, J.; Leng, X. Organometallics 2012, 31, 4574.

    22. [22]

      (a) Kosugi, M.; Fugami, K. Handbook of Organopalladium Chemistry for Organic Synthesis, Ed.: Negishi, E., Wiley, New York, 2002.
      (b) Tsuji, J. Palladium Reagents and Catalysts, Wiley, Chichester, U. K. 2004.
      (c) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.

    23. [23]

      Warner, B. P.; Buchwald, S. L. J. Org. Chem. 1994, 59, 5822.  doi: 10.1021/jo00098a052

    24. [24]

      (a) Mössinger, D.; Jester, S. S.; Sigmund, E.; Müller, U.; Höger, S. Macromolecules 2009, 42, 7974.
      (b) Nicolaou, K. C.; Zipkin, R. E.; Petasis, N. A. J. Am. Chem. Soc. 1982, 104, 5558.

    25. [25]

      Peña-López, M.; Ayán-Varela, M.; Sarandeses, L. A.; Sestelo, J. P. Chem. Eur. J. 2010, 16, 9905.  doi: 10.1002/chem.201000726

    26. [26]

      (a) Peng, L.-F.; Xu, F.; Shinohara, K.; Orita, A.; Otera, J. Org. Chem. Front. 2015, 2, 248.
      (b) Ikegashira, K.; Nishihara, Y.; Hirabayashi, K.; Mori, A.; Hiyama, T. Chem. Commun. 1997, 1039.
      (c) Nishihara, Y.; Ikegashira, K.; Mori, A.; Hiyama, T. Chem. Lett. 1997, 26, 1233.
      (d) Nishihara, Y.; Ikegashira, K.; Hirabayashi, K.; Ando, J.; Mori, A.; Hiyama, T. J. Org. Chem. 2000, 65, 1780.

  • 加载中
    1. [1]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    2. [2]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    3. [3]

      Jian-Rong Li Jieying Hu Lai-Hon Chung Jilong Zhou Parijat Borah Zhiqing Lin Yuan-Hui Zhong Hua-Qun Zhou Xianghua Yang Zhengtao Xu Jun He . Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion. Chinese Journal of Structural Chemistry, 2024, 43(8): 100380-100380. doi: 10.1016/j.cjsc.2024.100380

    4. [4]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    5. [5]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    6. [6]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    7. [7]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    8. [8]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    9. [9]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    10. [10]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    11. [11]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    12. [12]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    13. [13]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    14. [14]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

    15. [15]

      Yuqing WangZhemin LiQingjun LuQizhao LiJiaxin LuoChengjie LiYongshu Xie . Solar cells based on doubly concerted companion dyes with the efficiencies modulated by inserting an ethynyl group at different positions. Chinese Chemical Letters, 2024, 35(5): 109093-. doi: 10.1016/j.cclet.2023.109093

    16. [16]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    17. [17]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    18. [18]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    19. [19]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    20. [20]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

Metrics
  • PDF Downloads(394)
  • Abstract views(5172)
  • HTML views(836)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return