Citation: Liu Xinming, Li Lu, Jin Licheng, Zhao Jincan, Hua Yuanzhao, Wang Mincan, Liu Lantao. Oxidative Halocyclization of N-Allylarylamides with KX/Oxone System: Green Synthesis of 5-Halomethyl-2-Oxazolines[J]. Chinese Journal of Organic Chemistry, ;2020, 40(12): 4298-4304. doi: 10.6023/cjoc202005087 shu

Oxidative Halocyclization of N-Allylarylamides with KX/Oxone System: Green Synthesis of 5-Halomethyl-2-Oxazolines

  • Corresponding author: Zhao Jincan, jczhao@hbu.edu.cn Liu Lantao, liult05@iccas.ac.cn
  • Received Date: 29 May 2020
    Revised Date: 2 July 2020
    Available Online: 22 July 2020

    Fund Project: the Fundamental Research Funds for the Midwest Universities Comprehensive Strength Promotion Project 521000981026the Program of Science and Technology Innovation Talents of Henan Province 2018JQ0011Project supported by the National Natural Science Foundation of China (No. 21572126), the Program of Science and Technology Innovation Talents of Henan Province (No. 2018JQ0011), the Natural Science Foundation of Hebei Province (No. B2019201415), and the Fundamental Research Funds for the Midwest Universities Comprehensive Strength Promotion Project (No. 521000981026)the National Natural Science Foundation of China 21572126the Natural Science Foundation of Hebei Province B2019201415

Figures(3)

  • With inexpensive potassium halide (KX) as halogen source, and oxone as oxidant, a series of allylamides underwent halocyclization reaction and generated 5-halomethyl-2-oxazolines in good to excellent isolated yields under mild conditions. The protocol showed attractive advanced features including low cost of halogen source, absence of organic byproduct, and resultant environmental-friendly nature. In addition, various useful derivatives could be expected by proper nucleophilic substitution reactions.
  • 加载中
    1. [1]

      Saravanan, P.; Corey, E. J. J. Org. Chem. 2003, 68, 2760.  doi: 10.1021/jo0268916

    2. [2]

      Harper, K. C.; Sigman, M. S. Science 2011, 333, 1875.  doi: 10.1126/science.1206997

    3. [3]

      Yeston, J. Science 2008, 321, 17a.  doi: 10.1126/science.321.5885.17a

    4. [4]

      Nganga, J. K.; Samanamu, C. R.; Tanski, J. M.; Pacheco, C.; Saucedo, C.; Batista, V. S.; Grice, K. A.; Ertem, M. Z.; Angeles-Boza, A. M. Inorg. Chem. 2017, 56, 3214.  doi: 10.1021/acs.inorgchem.6b02384

    5. [5]

      Jia, W. G.; Zhang, T.; Xie, D.; Xu, Q. T.; Ling, S.; Zhang, Q. Dalton Trans. 2016, 45, 14230.  doi: 10.1039/C6DT02734B

    6. [6]

      Deng, H. P.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2009, 351, 2897.  doi: 10.1002/adsc.200900550

    7. [7]

      Yeston, J. S. Science 2005, 310, 1249a.  doi: 10.1126/science.310.5752.1249a

    8. [8]

      Sodeoka, M. Science 2011, 334, 1651.  doi: 10.1126/science.1215220

    9. [9]

      Yao, W.; Duan, Z. C.; Zhang, Y.; Sang, X.; Xia, X. F.; Wang, D. Adv. Synth. Catal. 2019, 361, 5695.  doi: 10.1002/adsc.201900929

    10. [10]

      Sang, X.; Hu, X.; Tao, R.; Zhang, Y.; Zhu, H.; Wang, D. ChemPlusChem 2020, 85, 123.  doi: 10.1002/cplu.201900349

    11. [11]

      Yao, W.; Zhang, Y.; Zhu, H.; Ge, C.; Wang, D. Chin. Chem. Lett. 2020, 31, 701.  doi: 10.1016/j.cclet.2019.08.049

    12. [12]

      Hu, X.; Yang, B.; Yao, W.; Wang, D. Chin. J. Org. Chem. 2018, 38, 3296(in Chinese).
       

    13. [13]

      Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35, 676(in Chinese).
       

    14. [14]

      Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green Chem. 2019, 21, 5345.  doi: 10.1039/C9GC02086A

    15. [15]

      Yang, Q.; Zhang, Y.; Zeng, W.; Duan, Z.-C.; Sang, X.; Wang, D. Green Chem. 2019, 21, 5683.  doi: 10.1039/C9GC02409C

    16. [16]

      Qiu, Y.; Zhang, Y.; Jin, L.; Pan, L.; Du, G.; Ye, D.; Wang, D. Org. Chem. Front. 2019, 6, 3420.  doi: 10.1039/C9QO00892F

    17. [17]

      Ye, D.; Huang, R.; Zhu, H.; Zou, L.-H.; Wang, D. Org. Chem. Front. 2019, 6, 62.  doi: 10.1039/C8QO00941D

    18. [18]

      Bellotti, P.; Brocus, J.; El Orf, F.; Selkti, M.; Koenig, B.; Belmont, P.; Brachet, E. J. Org. Chem. 2019, 84, 6278.  doi: 10.1021/acs.joc.9b00568

    19. [19]

      Lamberth, C. J. Heterocycl. Chem. 2018, 55, 2035.  doi: 10.1002/jhet.3252

    20. [20]

      Seebach, D. Helv. Chim. Acta 2019, 102, e1900072.

    21. [21]

      Rajesh, N.; Manisha, B.; Ranjith, J.; Krishna, P. R. RSC Adv. 2016, 6, 6058.  doi: 10.1039/C5RA23013F

    22. [22]

      Kawamura, S.; Sekine, D.; Sodeoka, M. J. Fluorine Chem. 2017, 203, 115.  doi: 10.1016/j.jfluchem.2017.07.012

    23. [23]

      Minakata, S.; Morino, Y.; Oderaotoshi, Y.; Komatsu, M. Org. Lett. 2006, 8, 3335.  doi: 10.1021/ol061182q

    24. [24]

      Liu, G. Q.; Yang, C. H.; Li, Y. M. J. Org. Chem. 2015, 80, 11339.  doi: 10.1021/acs.joc.5b01832

    25. [25]

      Zhou, W.; Xie, C.; Han, J.; Pan, Y. Org. Lett. 2012, 14, 4766.  doi: 10.1021/ol302031z

    26. [26]

      Senadi, G. C.; Guo, B. C.; Hu, W. P.; Wang, J. J. Chem. Commun. (Camb.) 2016, 52, 11410.  doi: 10.1039/C6CC05138C

    27. [27]

      Yang, C.-H.; Xu, Z.-Q.; Duan, L.; Li, Y.-M. Tetrahedron 2017, 73, 6747.  doi: 10.1016/j.tet.2017.10.025

    28. [28]

      Morino, Y.; Hidaka, I.; Oderaotoshi, Y.; Komatsu, M.; Minakata, S. Tetrahedron 2006, 62, 12247.  doi: 10.1016/j.tet.2006.10.003

    29. [29]

      Kawato, Y.; Kubota, A.; Ono, H.; Egami, H.; Hamashima, Y. Org. Lett. 2015, 17, 1244.  doi: 10.1021/acs.orglett.5b00220

    30. [30]

      Jaganathan, A.; Garzan, A.; Whitehead, D. C.; Staples, R. J.; Borhan, B. Angew. Chem. Int. Ed. 2011, 50, 2593.  doi: 10.1002/anie.201006910

    31. [31]

      Egami, H.; Ide, T.; Kawato, Y.; Hamashima, Y. Chem. Commun. 2015, 51, 16675.  doi: 10.1039/C5CC07011B

    32. [32]

      Egami, H.; Yoneda, T.; Uku, M.; Ide, T.; Kawato, Y.; Hamashima, Y. J. Org. Chem. 2016, 81, 4020.  doi: 10.1021/acs.joc.6b00295

    33. [33]

      Nagao, Y.; Hisanaga, T.; Egami, H.; Kawato, Y.; Hamashima, Y. Chem.-Eur. J. 2017, 23, 16758.  doi: 10.1002/chem.201704847

    34. [34]

      Scheidt, F.; Thiehoff, C.; Yilmaz, G.; Meyer, S.; Daniliuc, C. G.; Kehr, G.; Gilmour, R. Beilstein J. Org. Chem. 2018, 14, 1021.  doi: 10.3762/bjoc.14.88

    35. [35]

      Haupt, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 242.  doi: 10.1021/acs.orglett.8b03682

    36. [36]

      Hussain, H.; Green, I. R.; Ahmed, I. Chem. Rev. 2013, 113, 3329.  doi: 10.1021/cr3004373

    37. [37]

      Xu, J.; Tong, R. Green Chem. 2017, 19, 2952.  doi: 10.1039/C7GC01341H

    38. [38]

      Moriyama, K.; Sugiue, T.; Nishinohara, C.; Togo, H. J. Org. Chem. 2015, 80, 9132.  doi: 10.1021/acs.joc.5b01497

    39. [39]

      Li, Y.; Ma, L. F.; Wang, X. J.; Lei, B. W.; Zhao, Y.; Yang, J. Y.; Li, Z. Y. Chin. J. Org. Chem. 2017, 37, 1213(in Chinese).
       

    40. [40]

      Tao, X. C.; Cao, X. J.; Yu, W.; Zhang, J. T. Chin. J. Org. Chem. 2010, 30, 250(in Chinese).
       

    41. [41]

      Xie, L.-Y.; Peng, S.; Liu, F.; Liu, Y.-F.; Sun, M.; Tang, Z.-L.; Jiang, S.; Cao, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2019, 7, 7193.  doi: 10.1021/acssuschemeng.9b00200

    42. [42]

      Park, S.; Lee, H.; Lee, Y. Adv. Synth. Catal. 2019, 362, 572.

    43. [43]

      Peng, S.; Song, Y.-X.; He, J.-Y.; Tang, S.-S.; Tan, J.-X.; Cao, Z.; Lin, Y.-W.; He, W.-M. Chin. Chem. Lett. 2019, 30, 2287.  doi: 10.1016/j.cclet.2019.08.002

    44. [44]

      Yue, H.; Bao, P.; Wang, L.; Lü, X.; Yang, D.; Wang, H.; Wei, W. Chin. J. Org. Chem. 2019, 39, 463(in Chinese).
       

    45. [45]

      Nagaraju, K.; Rajesh, N.; Krishna, P. R. Synth. Commun. 2018, 48, 1001.  doi: 10.1080/00397911.2017.1416142

  • 加载中

Metrics
  • PDF Downloads(29)
  • Abstract views(2911)
  • HTML views(338)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return